题目内容
已知bn=(1+1)(1+
)(1+
)…(1+
),cn=6(1-
).用数学归纳法证明:对任意n∈N*,bn≤cn.
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| 1 |
| 2n |
分析:先证明n=1时,结论成立,再证明当n=k+1时,结论成立,此时要利用归纳假设.
解答:证明:(1)当n=1时,b1=(1+1)(1+
)=3,c1=6(1-
)=3,所以b1≤c1成立.
(2)设当n=k时,有bk≤ck成立,即(1+1)(1+
)(1+
)…(1+
)≤6(1-
)
当n=k+1时,(1+1)(1+
)(1+
)…(1+
)(1+
)≤6(1-
)(1+
)
=6(1+
-
-
)=6(1-
-
)<6(1-
)
即当n=k+1时,不等式也成立,
综合(1)(2)可知原不等式成立.
| 1 |
| 2 |
| 1 |
| 2 |
(2)设当n=k时,有bk≤ck成立,即(1+1)(1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2k |
| 1 |
| 2k |
当n=k+1时,(1+1)(1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
=6(1+
| 1 |
| 2k+1 |
| 1 |
| 2k |
| 1 |
| 22k+1 |
| 1 |
| 2k+1 |
| 1 |
| 22k+1 |
| 1 |
| 2k+1 |
即当n=k+1时,不等式也成立,
综合(1)(2)可知原不等式成立.
点评:本题考查数学归纳法的运用,考查不等式的证明,正确运用数学归纳法的证题步骤是关键.
练习册系列答案
相关题目