题目内容
17.tan70°cos10°+$\sqrt{3}$sin10°tan70°-2sin50°=( )| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
分析 根据两角和正弦公式,二倍角公式,同角的三角函数的关系即可求出.
解答 解:tan70°cos10°+$\sqrt{3}$sin10°tan70°-2sin50°,
=tan70°(cos10°+$\sqrt{3}$sin10°)-2sin50°,
=2tan70°($\frac{1}{2}$cos10°+$\frac{\sqrt{3}}{2}$sin10°)-2sin50°,
=2tan70°sin40°-2sin50°
=2•$\frac{sin70°}{cos70°}$•2sin20°cos20°-2cos40°
=4•$\frac{cos20°}{sin20°}$sin20°cos20°-2(2cos220°-1),
=4cos220°-4cos220°+2,
=2,
故选:D.
点评 本题考查了两角和正弦公式,二倍角公式,同角的三角函数的关系,属于基础题.
练习册系列答案
相关题目
8.已知函数$f(x)=\left\{\begin{array}{l}{{2}^{x-1}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$且f(a)≥-2,则实数a的取值范围是( )
| A. | (-∞,1] | B. | [3,+∞) | C. | (-∞,3] | D. | [1,3] |
9.已知集合M={x|x2≥9},N={-3,0,1,3,4},则M∩N=( )
| A. | {-3,0,1,3,4} | B. | {-3,3,4} | C. | {1,3,4} | D. | {x|x≥±2} |
6.己知椭圆$\frac{{x}^{2}}{2}$+y2=1,过右焦点F作一条与x轴不垂直的直线交椭圆于A、B两点,线段AB的中垂线分别交直线x=-2和AB于P、C,则|$\frac{PC}{AB}$|的取值范围是( )
| A. | [2,+∞) | B. | [1,+∞) | C. | [$\frac{1}{2}$,5) | D. | [$\frac{3}{2}$,+∞) |