题目内容
15.已知三棱柱ABC-A′B′C′的侧面均是矩形,求证:它的任意两个侧面的面积和大于第三个侧面的面积.分析 利用三角形中任意两边之和大于第三边来进行证明.
解答
证明:∵三棱柱ABC-A′B′C′的侧面均是矩形,
∴三个侧面的面积分别为AB•AA1,AC•AA1,BC•AA1,
∵AB+AC>BC,AB+BC>AC,AC+BC>AB,
∴它的任意两个侧面的面积和大于第三个侧面的面积.
点评 本题考查侧面均为矩形的三棱柱的任意两个侧面的面积和大于第三个侧面的面积的证明,是基础题,解题时要注意三角形中任意两边之和大于第三边这一性质的合理运用.
练习册系列答案
相关题目
5.在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么与直线AM垂直的向量有( )
| A. | $\overrightarrow{CN}$ | B. | $\overrightarrow{BC}$ | C. | $\overrightarrow{C{C}_{1}}$ | D. | $\overrightarrow{{B}{C}_{1}}$ |
6.
如图所示的水平放置的三角形的直观图中,D′是△A′B′C′中B′C′边的中点,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中( )
| A. | 最长的是AB,最短的是AC | B. | 最长的是AC,最短的是AB | ||
| C. | 最长的是AB,最短的是AD | D. | 最长的是AD,最短的是AC |
10.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|且|$\overrightarrow{a}$+2$\overrightarrow{b}$|>|m$\overrightarrow{b}$|恒成立,则实数m的取值范围是( )
| A. | [-2,2] | B. | [-$\frac{5}{2}$,$\frac{5}{2}$] | C. | (-2,2) | D. | (-$\frac{5}{2}$,$\frac{5}{2}$) |
4.非零向量 $\overrightarrow{a}$,$\overrightarrow{b}$夹角为120°,且|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围为( )
| A. | [1,$\sqrt{3}$] | B. | [2,$\frac{4\sqrt{3}}{3}$] | C. | [$\frac{2\sqrt{3}}{3}$,4) | D. | [1,2] |