题目内容
已知锐角中内角、、所对边的边长分别为、、,满足,且.
(Ⅰ)求角的值;
(Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.
设等差数列的前项和为,数列的前项和为满足
(Ⅰ)求数列的通项公式及数列的前项和;
(Ⅱ)是否存在非零实数,使得数列为等比数列?并说明理由
已知函数 则_______,函数的单调递减区间是_______.
已知直线与圆相交于A,B两点,弦AB的中点为
(1)求实数的取值范围以及直线的方程;
(2)若以AB为直径的圆过原点O,求圆C的方程.
已知向量且A、B、C分别为△ABC的三边a、b、c所对的角.
(1)求角C的大小;
(2)若成等差数列,且,求c边的长.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若在上恒成立,求实数的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意的,求证:.
当且时,函数必过定点_______.
设函数是定义域为的奇函数.
(1)求值;
(2)若,试判断函数单调性,并求使不等式恒成立的的取值范围;
(3)若,设,在上的最小值为,求的值.
已知,表示两个不同的平面,为平面内的一条直线,则“”是“”的 条件.(横线上填“充分不必要”,“必要不充分条件”,“充要”,“既不充分也不必要”中的一个)