题目内容
若复数(为虚数单位),则||= .
如图, 在四棱锥中, 底面是矩形, 四条侧棱长均相等.
(1)求证:平面;
(2)求证:平面平面.
甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.
(1)若以表示和为6的事件,求;
(2)现连玩三次,若以表示甲至少赢一次的事件,表示乙至少赢两次的事件,试问与是否为互斥事件?为什么?
(3)这种游戏规则公平吗?试说明理由.
先后抛掷2枚均匀的一分、二分的硬币,观察落地后硬币的正、反面情况,则下列事件包含3个基本事件的是( )
A.“至少一枚硬币正面向上”
B.“只有一枚硬币正面向上”
C.“两枚硬币都是正面向上”
D.“两枚硬币一枚正面向上,另一枚反面向上”
已知函数有一个极值,则实数a的取值范围为 .
设是方程的解,则属于区间( )
A. (0,1) B. (1,2)
C. (2,3) D. (3,4)
某市为鼓励居民节约用电,将实行阶梯电价,该市每户居民每月用电量划分为三档,电价实行分档递增.
第一档电量:用电量不超过200千瓦时,电价标准为0.5元/千瓦时;
第二档电量:用电量超过200但不超过400千瓦时,超出第一档电量的部分,电价标准比第一档电价提高0.1元/千瓦时;
第三档电量:用电量超过400千瓦时,超出第二档电量的部分,电价标准比第一档电价提高0.3元/千瓦时.随机调查了该市1000户居民,获得了他们某月的用电量数据,整理得到如下的频率分布表:
(Ⅰ)根据频率分布表中的数据,写出的值;
(Ⅱ)从该市调查的1000户居民中随机抽取一户居民,求该户居民用电量不超过300千瓦时的概率;
(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该市每户居民该月的平均电费.
已知函数.
(Ⅰ)若曲线在点处的切线经过点(0,1),求实数的值;
(Ⅱ)求证:当时,函数至多有一个极值点;
(Ⅲ)是否存在实数,使得函数在定义域上的极小值大于极大值?若存在,求出的取值范围;若不存在,请说明理由.
函数的最大值等于____________.