题目内容

15.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-1,2],图象如图2所示.A={x|f(g(x))=0},B={x|g(f(x))=0},则A∩B中元素的个数为(  )
A.1B.2C.3D.4

分析 结合图象,分别求出集合A,B,再根据交集的定义求出A∩B,问题得以解决.

解答 解:由图象可知,
若f(g(x))=0,
则g(x)=0或g(x)=1,
由图2知,g(x)=0时,x=0,或x=2,
g(x)=1时,x=1或x=-1
故A={-1,0,1,2},
若g(f(x))=0,
由图1知,f(x)=0,或f(x)=2(舍去),
当f(x)=0时,x=-1或0或1,
故B={-1,0,1},
所以A∩B={-1,0,1},
则A∩B中元素的个数为3个.
故选:C.

点评 本题考查了方程的根与函数的图象的关系应用及数形结合的思想应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网