题目内容
设函数。
(1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);
(2)若对任意恒成立,求的取值范围。
设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局。在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束.
(1)求恰好进行了三局比赛,比赛就结束的概率;
(2)记从比赛开始到比赛结束所需比赛的局数为,求的概率分布列和数学期望.
已知向量,且,则实数的值为( )
A. B. C.或 D.
焦点在轴上的椭圆方程为 ,短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为,则椭圆的离心率为( )
A. B. C. D.
复数的共轭复数在复平面上对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
将三项式展开,当时,得到如下左图所示的展开式,右图所示的广义杨辉三角形:
第0行 1
第1行 1 1 1
第2行 1 2 3 2 1
第3行 1 3 6 7 6 3 1
第4行 1 4 10 16 19 16 10 4 1
……
观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第行共有个数.若在的展开式中,项的系数为75,则实数的值为___________.
假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是( )
直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于 .
已知抛物线,直线与交于、两点,且OA·OB=2,其中为原点.
(1)求抛物线的方程;
(2)点坐标为,记直线、的斜率分别为,证明:为定值.