题目内容

16.已知tanθ=2,且θ∈($\frac{π}{2}$,$\frac{3π}{2}$),则sin$\frac{θ}{2}$=$\frac{\sqrt{50+10\sqrt{5}}}{10}$.

分析 由条件利用同角三角函数的基本关系,二倍角公式即可求出.

解答 解:∵tanθ=2,且θ∈($\frac{π}{2}$,$\frac{3π}{2}$),
∴$\frac{sinθ}{cosθ}$=tanθ=2,
∴sinθ=2cosθ,
∵sin2θ+cos2θ=1,
∴cosθ=-$\frac{\sqrt{5}}{5}$,
∵θ∈($\frac{π}{2}$,$\frac{3π}{2}$),
∴$\frac{θ}{2}$∈($\frac{π}{4}$,$\frac{3π}{4}$),
∴sin2$\frac{θ}{2}$=$\frac{1}{2}$(1-cosθ)=$\frac{1}{2}$×(1+$\frac{\sqrt{5}}{5}$)
∴sin$\frac{θ}{2}$=$\sqrt{\frac{5+\sqrt{5}}{10}}$=$\frac{\sqrt{50+10\sqrt{5}}}{10}$,
故答案为:$\frac{\sqrt{50+10\sqrt{5}}}{10}$

点评 本题考查了同角三角函数的关系和二倍角公式,培养学生的元素能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网