题目内容
判断下列各点的位置关系,并给出证明:
(1)A(1,2),B(-3,-4),C(2,3.5)
(2)E(9,1),F(1,-3),G(8,0.5)
(3)P(-1,2),Q(0.5,0),R(5,-6)
(1)A(1,2),B(-3,-4),C(2,3.5)
(2)E(9,1),F(1,-3),G(8,0.5)
(3)P(-1,2),Q(0.5,0),R(5,-6)
考点:直线的斜率
专题:直线与圆
分析:分别求出三个题目中两组点连线的斜率加以判断.
解答:
解:(1)A(1,2),B(-3,-4),C(2,3.5)三点共线.
证明:∵kAB=
=
,kAC=
=
,
∴A,B,C三点共线;
(2)E(9,1),F(1,-3),G(8,0.5)三点共线.
证明:∵kEF=
=
,kEG=
=
,
∴E,F,G三点共线;
(3)P(-1,2),Q(0.5,0),R(5,-6)三点共线.
证明:∵kPQ=
=-
,kQR=
=-
,
∴P,Q,R三点共线.
证明:∵kAB=
| -4-2 |
| -3-1 |
| 3 |
| 2 |
| 3.5-2 |
| 2-1 |
| 3 |
| 2 |
∴A,B,C三点共线;
(2)E(9,1),F(1,-3),G(8,0.5)三点共线.
证明:∵kEF=
| -3-1 |
| 1-9 |
| 1 |
| 2 |
| 0.5-1 |
| 8-9 |
| 1 |
| 2 |
∴E,F,G三点共线;
(3)P(-1,2),Q(0.5,0),R(5,-6)三点共线.
证明:∵kPQ=
| 0-2 |
| 0.5+1 |
| 4 |
| 3 |
| -6-0 |
| 5-0,5 |
| 4 |
| 3 |
∴P,Q,R三点共线.
点评:本题考查了直线的斜率,训练了由两点坐标求斜率的公式,是基础题.
练习册系列答案
相关题目
已知集合A={0,1,2},集合B={x,y|x∈A,y∈A,x+y∈A},则B的元素个数为( )
| A、5 | B、6 | C、7 | D、8 |