题目内容
1.| A. | $\frac{π+2}{3}$ | B. | $\frac{5π-2}{3}$ | C. | $\frac{5π}{3}$-2 | D. | 2$π-\frac{2}{3}$ |
分析 根据几何体的三视图,得出该几何体是半圆锥体与直三棱锥的组合体,求出该几何体的体积,再求出圆柱的体积,即可求出被削掉的那部分体积.
解答 解:根据几何体的三视图,得;
该几何体是底面半径为1,高为2的半圆锥体,
与底面为等腰三角形高为2的三棱锥的组合体,
其体积为$\frac{1}{2}$•$\frac{1}{3}$πr2h+$\frac{1}{3}$Sh=$\frac{1}{6}$π×12×2+$\frac{1}{3}$×$\frac{1}{2}$×2×1×2=$\frac{π+2}{3}$;
又圆柱的体积为πr2h=π×12×2=2π,
所以被削掉的那部分的体积为2π-$\frac{π+2}{3}$=$\frac{5π-2}{3}$.
故选:B.
点评 本题考查了由三视图求几何体的体积的应用问题,也考查了三视图与实物图之间的关系问题,解题时应用三视图中的数据还原出实物图的数据,再根据相关的公式求表体积的应用问题,是基础题目.
练习册系列答案
相关题目
11.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:
其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,-1代表“不良好,绝收”.
(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;
(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?
(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| 生长指数 | 2 | 1 | 0 | -1 | ||
| 地域 | 南区 | 空气质量好 | 45 | 54 | 26 | 35 |
| 空气质量差 | 7 | 16 | 12 | 5 | ||
| 北区 | 空气质量好 | 70 | 105 | 20 | 25 | |
| 空气质量差 | 19 | 38 | 18 | 5 | ||
(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;
(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?
(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.
附:
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
6.在空间中,设m,n为两条不同直线,α,β为两个不同平面,则下列命题正确的是( )
| A. | 若m∥α且α∥β,则m∥β | |
| B. | 若α⊥β,m?α,n?β,则m⊥n | |
| C. | 若m⊥α且α∥β,则m⊥β | |
| D. | 若m不垂直于α,且n?α,则m必不垂直于n |
10.已知异面直线a与b所成角为锐角,下列结论不正确的是( )
| A. | 不存在一个平面α使得a?α,b?α | B. | 存在一个平面α使得a∥α,b∥α | ||
| C. | 不存在一个平面α使得a⊥α,b⊥α | D. | 存在一个平面α使得a∥α,b⊥α |