题目内容
13.已知f(2x+1)的定义域是[-1,3],且f(x)的定义域由f(2x+1)确定,试求f(x)的定义域[-1,7].分析 根据已知函数的定义域,求出2x+1的范围,就是所求函数的定义域.
解答 解:∵f(2x+1)的定义域是[-1,3],
∴x∈[-1,3],
∴2x+1∈[-1,7],
∴f(x)的定义域是[-1,7].
故答案为:[-1,7].
点评 本题考查了求函数定义域的应用问题,解题时应弄清定义域是函数自变量的取值范围,是基础题目.
练习册系列答案
相关题目
3.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f(${log_{\frac{1}{2}}}a$)≤2f(2),则a的取值范围是( )
| A. | (-∞,4] | B. | (0,4] | C. | $(0,\frac{1}{4}]$ | D. | $[\frac{1}{4},4]$ |
4.已知函数$f(x)=\left\{\begin{array}{l}{2^{-x}}+1,x≤0\\{log_3}x+ax,x>0\end{array}\right.$,若f(f(-1))>4a,则实数a的取值范围是( )
| A. | (-∞,1) | B. | (-∞,0) | C. | $(-∞,-\frac{1}{5})$ | D. | (1,+∞) |
8.下列函数是奇函数的是( )
| A. | f(x)=(x-1)$\sqrt{\frac{1+x}{1-x}}$ | B. | f(x)=$\frac{|x|}{x}$ | ||
| C. | f(x)=$\left\{\begin{array}{l}{1+x,(x≥0)}\\{1-x(x<0)}\end{array}\right.$ | D. | f(x)=$\frac{1}{x-1}$ |
5.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$且$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角为( )
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |