题目内容
如图,四棱锥P-ABCD中,底面为菱形,且,.
(Ⅰ)求证:;
(Ⅱ)若,求二面角的余弦值。
过点(3,1)作一直线与圆相交于M、N两点,则的最小值为( )
A. B.2 C.4 D.6
已知函数在上的图像是连续不断的一条曲线, 在用二分法研究函数的零点时, 第一次计算得到数据:,根据零点的存在性定理知存在零点 , 第二次计算 , 以上横线处应填的内容为( )
A.
B.
C.
D.
如图,为一直角三角形草坪,其中,米,米,为了重建草坪,设计师准备了两套方案:
方案一:扩大为一个直角三角形,其中斜边过点,且与平行,过点,过点;
方案二:扩大为一个等边三角形,其中过点,过点,过点.
(1)求方案一中三角形面积的最小值;
(2)求方案二中三角形面积的最大值.
已知函数,对为一个三角形的三边长,则称为“三角形函数”,已知函数是“三角形函数”,则实数的取值范围是
A. B. C. D.
小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系,轴在地平面上的球场中轴线上,轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程表示的曲线上,其中与发射方向有关.发射器的射程是指网球落地点的横坐标.
(1)求发射器的最大射程;
(2)请计算在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标最大为多少?并请说明理由.
如图,已知长方形中,,,为的中点.将沿折起,使得平面平面.
(1)求证:;
(2)若点是线段上的一动点,问点在何位置时,二面角的余弦值为.
过椭圆中心的直线与椭圆交于、两点,右焦点为,则△的最大面积是( )
如图1,在中,,,是上的高,沿将折成的二面角,如图2.
(1)证明:平面平面;
(2)设为的中点,,求异面直线与所成的角的大小.