题目内容
如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=
【答案】分析:旋转后的几何体是圆台除去一个倒放的圆锥,根据题目所给数据,求出圆台的侧面积、圆锥的侧面积、圆台的底面积,即可求出几何体的表面积.求出圆台体积减去圆锥体积,即可得到几何体的体积.
解答:
解:四边形ABCD绕AD旋转一周所成的
几何体,如右图:
S表面=S圆台下底面+S圆台侧面+S圆锥侧面
=πr22+π(r1+r2)l2+πr1l1
=
=
=
.
体积V=V圆台-V圆锥
=
[25π+
+4π]×4-
×2π×2×2
=
×39π×4-
×8π
=
.
所求表面积为:
,体积为:
.
点评:本题是基础题,考查旋转体的表面积与体积,转化思想的应用,计算能力的考查,都是为本题设置的障碍,仔细分析旋转体的结构特征,为顺利解题创造依据.
解答:
几何体,如右图:
S表面=S圆台下底面+S圆台侧面+S圆锥侧面
=πr22+π(r1+r2)l2+πr1l1
=
=
=
体积V=V圆台-V圆锥
=
=
=
所求表面积为:
点评:本题是基础题,考查旋转体的表面积与体积,转化思想的应用,计算能力的考查,都是为本题设置的障碍,仔细分析旋转体的结构特征,为顺利解题创造依据.
练习册系列答案
相关题目