题目内容
在△ABC中,点P是BC上的点
=2
,
=λ
+μ
,则( )
| BP |
| PC |
| AP |
| AB |
| AC |
| A、λ=2,μ=1 | ||||
| B、λ=1,μ=2 | ||||
C、λ=
| ||||
D、λ=
|
分析:如图所示,由
=2
,可得
=
;利用向量的运算法则可得
=
-
,因此
=
(
-
.故
=
+
=
+
(
-
)=
+
.又由
=λ
+μ
.根据向量相等即可得出.
| BP |
| PC |
| BP |
| 2 |
| 3 |
| BC |
| BC |
| AC |
| AB |
| BP |
| 2 |
| 3 |
| AC |
| AB) |
| AP |
| AB |
| BP |
| AB |
| 2 |
| 3 |
| AC |
| AB |
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
| AP |
| AB |
| AC |
解答:解:如图所示,
∵
=2
,∴
=
,
∵
=
-
,∴
=
(
-
.
∴
=
+
=
+
(
-
)=
+
.
又
=λ
+μ
.
∴λ=
,μ=
.
故选C.
∵
| BP |
| PC |
| BP |
| 2 |
| 3 |
| BC |
∵
| BC |
| AC |
| AB |
| BP |
| 2 |
| 3 |
| AC |
| AB) |
∴
| AP |
| AB |
| BP |
| AB |
| 2 |
| 3 |
| AC |
| AB |
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
又
| AP |
| AB |
| AC |
∴λ=
| 1 |
| 3 |
| 2 |
| 3 |
故选C.
点评:熟练掌握向量的共线定理及运算法则、向量相等是解题的关键.
练习册系列答案
相关题目