题目内容
2.二项式(2x-$\frac{1}{2x}$)n(n∈N*)的展开式中,二项式系数最大的项是第4项,则其展开式中的常数项是-20.分析 在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.
解答 解:由题意知,展开式中有7项,n=6,通项公式为Tr+1=(-1)r•${C}_{6}^{r}$•26-r•x6-2r,
令6-2r=0,解得r=3,所以常数项为-${C}_{6}^{3}$=-20,
故答案为:-20.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.
练习册系列答案
相关题目
13.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在同一球面上,且该球的表面积为$\frac{81π}{4}$,则该棱锥的高为( )
| A. | $\frac{7}{2}$ | B. | $\frac{7}{4}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
7.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(0,2],(2,4],(4,6],(6,8],(8,10]分别加以统计,得到如图所示的频率分布直方图.

(Ⅰ)根据女性频率直方图估计女性使用微信的平均时间;
(Ⅱ)若每天玩微信超过4小时的用户列为“微信控”,否则称其为“非微信控”,
请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“微信控”与“性别”有关?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
(Ⅰ)根据女性频率直方图估计女性使用微信的平均时间;
(Ⅱ)若每天玩微信超过4小时的用户列为“微信控”,否则称其为“非微信控”,
请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“微信控”与“性别”有关?
| 微信控 | 非微信控 | 合计 | |
| 男性 | 50 | ||
| 女性 | 50 | ||
| 合计 | 100 |
参考数据:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |