题目内容
f(x)=2| 3 |
| π |
| 3 |
(1)若f (x+θ)是周期为2π的偶函数,求ω及θ值.
(2)f (x)在(0,
| π |
| 3 |
分析:(1)由f(x+θ)=2
sin(3ωx+3ωθ+
),ω>0是周期为2π的偶函数,利用周期公式及诱导公式得2π=
,3ωθ+
=
+2kπ,k∈Z,可解.
(2)由正弦函数的单调性结合条件可列3ω×
≤
,从而解得ω的取值范围,即可得ω的最大值.
| 3 |
| π |
| 3 |
| 2π |
| 3ω |
| π |
| 3 |
| π |
| 2 |
(2)由正弦函数的单调性结合条件可列3ω×
| π |
| 3 |
| π |
| 2 |
解答:解:(1)因为f(x+θ)=2
sin(3ωx+3θ+
),ω>0
又f(x+θ)是周期为2π的偶函数,
∴2π=
,3ωθ+
=
+2kπ,k∈Z
故ω=
,θ=2kπ+
,k∈Z
(2)因为f(x)在(0,
)上是增函数,
∴3ω×
+
≤
∴ω≤
故ω最大值为
| 3 |
| π |
| 3 |
又f(x+θ)是周期为2π的偶函数,
∴2π=
| 2π |
| 3ω |
| π |
| 3 |
| π |
| 2 |
故ω=
| 1 |
| 3 |
| π |
| 6 |
(2)因为f(x)在(0,
| π |
| 3 |
∴3ω×
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| 1 |
| 6 |
故ω最大值为
| 1 |
| 6 |
点评:本题考查了y=Asin(ωx+φ)中参数的物理意义,及正弦函数的奇偶性与单调性,是个基础题.
练习册系列答案
相关题目