题目内容
17.利用秦九韶算法分别计算f(x)=8x5+5x4+3x3+2x+1在x=2与x=-1时的值,并判断多项式f(x)在区间[-1,2]上有没有零点.分析 利用秦九韶算法即可得出f(2),f(-1).再利用函数零点判定定理即可判断出多项式f(x)在区间[-1,2]零点情况.
解答 解:∵f(x)=8x5+5x4+3x3+2x+1=((((8x+5)x+3)x+0)x+2)x+1,
当x=2时,
v0=8,
v1=8×2+5=21,
v2=21×2+3=45,
v3=45×2=90,
v4=90×2+2=182,
v5=182×2+1=365,
即f(2)=365
同理得:f(-1)=-7,
∵f(-1)f(2)<0,
∴f(x)在区间[-1,2]上存在零点.
点评 本题考查了秦九韶算法、函数零点判定定理,属于基础题.
练习册系列答案
相关题目
8.对任意平面向量$\overrightarrow a、\overrightarrow b$,下列关系式中不恒成立的是( )
| A. | $|{\overrightarrow a•\overrightarrow b}|≤|{\overrightarrow a}||{\overrightarrow b}|$ | B. | $|{\overrightarrow a-\overrightarrow b}|≤|{|{\overrightarrow a}|-|{\overrightarrow b}|}|$ | C. | ${(\overrightarrow a+\overrightarrow b)^2}={|{\overrightarrow a+\overrightarrow b}|^2}$ | D. | $(\overrightarrow a+\overrightarrow b)(\overrightarrow a-\overrightarrow b)={\overrightarrow a^2}-{\overrightarrow b^2}$ |
2.
2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(图1):
(Ⅰ)试根据频率分布直方图估计小区每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
附:临界值表参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(Ⅰ)试根据频率分布直方图估计小区每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
| 经济损失不超过 4000元 | 经济损失超过 4000元 | 合计 | |
| 捐款超过 500元 | 30 | ||
| 捐款不超 过500元 | 6 | ||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
9.已知集合M={x|x>1},N={x|x2-2x≥0},则(∁RM)∩N=( )
| A. | (-∞,-2] | B. | (-∞,0] | C. | [0,1) | D. | [-2,0] |
6.设$M=\left\{{x\left|{y=\sqrt{x-1}}\right.}\right\}$,N={x|2x(x-2)<1},则M∩N为( )
| A. | {x|x≥1} | B. | {x|1≤x<2} | C. | {x|0<x≤1} | D. | {x|x≤1} |