题目内容
(1)求的值;
(2)设m,nN*,n≥m,求证:
(m+1)+(m+2)+(m+3)++n+(n+1)=(m+1).
已知,,,则
(A) (B)
(C) (D)
某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.
已知a>b>1.若logab+logba=,ab=ba,则a= ,b= .
设函数,则的最小正周期
A.与b有关,且与c有关
B.与b有关,但与c无关
C.与b无关,且与c无关
D.与b无关,但与c有关
[选修4-1几何证明选讲]如图,在ABC中,∠ABC=90°,BD⊥AC,D为垂足,E是BC的中点.
求证:∠EDC=∠ABD.
在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是 .
如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60º,G为BC的中点.
(Ⅰ)求证:FG平面BED;
(Ⅱ)求证:平面BED⊥平面AED;
(Ⅲ)求直线EF与平面BED所成角的正弦值.
在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.
(Ⅰ)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;
(Ⅱ)已知EF=FB=AC=,AB=BC.求二面角的余弦值.