题目内容
设函数,则的最小正周期
A.与b有关,且与c有关
B.与b有关,但与c无关
C.与b无关,且与c无关
D.与b无关,但与c有关
已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为
(A) (B) (C) (D)
如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将ACD翻折成ACD',直线AC与BD' 所成角的余弦的最大值是______.
如图,在三棱台中,平面平面,,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求二面角B-AD-F的平面角的余弦值.
已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A=______,b=________.
(1)求的值;
(2)设m,nN*,n≥m,求证:
(m+1)+(m+2)+(m+3)++n+(n+1)=(m+1).
已知函数.
(1)设.
①求方程=2的根;
②若对任意,不等式恒成立,求实数m的最大值;
(2)若,函数有且只有1个零点,求ab的值.
复数其中i为虚数单位,则z的实部是 .
已知集合则=