题目内容
8.给出一个命题P:若a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个小于零.在用反证法证明P时,应该假设( )| A. | a,b,c,d中至少有一个正数 | B. | a,b,c,d全为正数 | ||
| C. | a,b,c,d全都大于或等于0 | D. | a,b,c,d中至多有一个负数 |
分析 用反证法证明数学命题时,应先假设结论的否定成立.
解答 解:“a,b,c,d中至少有一个负数”的否定为“a,b,c,d全都大于或等于0”,
由用反证法证明数学命题的方法可得,应假设“a,b,c,d全都大于或等于0”,
故选:C.
点评 本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.
练习册系列答案
相关题目
19.某校高二(1)班每周都会选出两位“迟到之星”,期中考试之前一周“迟到之星”人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生”,小赵说:“一定没有我,肯定有小宋”,小宋说:“小马、小谭二人中有且仅有一人是迟到之星”,小谭说:“小赵说的对”.已知这四人中有且只有两人的说法是正确的,则“迟到之星”是( )
| A. | 小赵、小谭 | B. | 小马、小宋 | C. | 小马、小谭 | D. | 小赵、小宋 |
16.已知一只蚂蚁在边长为4的正三角形内爬行,则此蚂蚁到三角形三个顶点的距离均超过1的概率为( )
| A. | $\frac{\sqrt{3}π}{12}$ | B. | $\frac{\sqrt{3}π}{24}$ | C. | 1-$\frac{\sqrt{3}π}{12}$ | D. | 1-$\frac{\sqrt{3}π}{24}$ |
13.用数学归纳法证明n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,(n∈N*)时,若记f(n)=n+(n+1)+(n+2)+…+(3n-2),则f(k+1)-f(k)等于( )
| A. | 3k-1 | B. | 3k+1 | C. | 8k | D. | 9k |
17.已知过原点的直线l1与直线l2:x+3y+1=0垂直,圆C的方程为x2+y2-2ax-2ay=1-2a2(a>0),若直线l1与圆C交于M,N两点,则当△CMN的面积最大时,圆心C的坐标为( )
| A. | $({\frac{{\sqrt{5}}}{2},\frac{{\sqrt{5}}}{2}})$ | B. | $({\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}})$ | C. | $({\frac{1}{2},\frac{1}{2}})$ | D. | (1,1) |