题目内容

18.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)在区间(0,π)上存在唯一一个x0∈(0,π),使得f(x0)=1,则ω的取值范围为(  )
A.($\frac{1}{2}$,$\frac{11}{6}$]B.[$\frac{1}{2}$,$\frac{11}{6}$)C.($\frac{1}{3}$,$\frac{13}{6}$]D.[$\frac{1}{3}$,$\frac{13}{6}$)

分析 由题意利用正弦函数的图象特征,可得$\frac{5π}{6}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,由此求得ω的范围.

解答 解:∵x0∈(0,π),∴ωx0+$\frac{π}{3}$∈($\frac{π}{3}$,ωπ+$\frac{π}{3}$).
由存在唯一一个x0∈(0,π),使得f(x0)=2sin(ωx+$\frac{π}{3}$)=1,可得sin(ω•x0+$\frac{π}{3}$)=$\frac{1}{2}$,
∴$\frac{5π}{6}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,求得$\frac{1}{2}$<ω≤$\frac{11}{6}$,
故选:A.

点评 本题主要考查正弦函数的图象特征,判断$\frac{5π}{6}$<ωπ+$\frac{π}{3}$≤2π+$\frac{π}{6}$,是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网