题目内容
设cos(α-(文)求cos(α+β)的值.
(理)求tan(α+β)的值.
解:(文)∵
<α<π,0<β<
,
∴
<α-
<π,-
<
-β<
.
∴sin(α-
)=
=
,
cos(
-β)=
=
,
∴cos
=cos[(α-
)-(
-β)]
=cos(α-
)cos(
-β)+sin(α-
)sin(
-β)
=-
×
+
×
=
.
故cos(α+β)=2cos2
-1=-
.
(理)∵
<α<π,0<β<
,
∴
<α-
<π,-
<
-β<
,
∴sin(α-
)=
=
,
cos(
-β)=
=
,
∴cos
=cos[(α-
)-(
-β)]
=cos(α-
)cos(
-β)+sin(α-
)sin(
-β)
=-
×
+
×
=
,
sin
=sin[(α-
)-(
-β)]
=sin(α-
)cos(
-β)-cos(α-
)sin(
-β)
=
×
+
×
=
.
sin(α+β)=2sin
cos
=2×
×
=
,
∴tan(α+β)=
=-
.
练习册系列答案
相关题目
设cosα=t,则tan(π-α)等于( )
A、
| ||||
B、-
| ||||
C、±
| ||||
D、±
|