题目内容
16.(1)求证:平面PCM⊥平面PAD;
(2)求三棱锥D-PAC的高.
分析 (1)由题意可知△ACD,△PAD是等边三角形,故而PM⊥AD,CM⊥AD,于是AD⊥平面PCM,所以平面PCM⊥平面PAD;
(2)分别以△ACD和△PAC为棱锥的底面求出棱锥的体积,利用体积相等列出方程解出底面PAC上的高.
解答 证明:(1)∵PA=PD,M是AD的中点,
∴PM⊥AD.
∵四边形ABCD是菱形,∠ABC=60°,
∴△ACD是正三角形,
∴CM⊥AD,
又PM?平面PCM,CM?平面PCM,PM∩CM=M,
∴AD⊥平面PCM,∵AD?平面PAD,
∴平面PCM⊥平面PAD.
(2)∵△ACD,△PAD是边长为2的正三角形,∴PM=CM=$\sqrt{3}$.
∴VP-ACD=$\frac{1}{3}{S}_{△ACD}•PM$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\sqrt{3}=1$.
∵AC=2,PA=2,PC=$\sqrt{P{M}^{2}+C{M}^{2}}=\sqrt{6}$,
∴cos∠PAC=$\frac{P{A}^{2}+A{C}^{2}-P{C}^{2}}{2PA•AC}$=$\frac{1}{4}$.∴sin∠PAC=$\frac{\sqrt{15}}{4}$.
∴S△APC=$\frac{1}{2}PA•AC•sin∠PAC$=$\frac{\sqrt{15}}{2}$.
设三棱锥D-PAC的高为h,
则VD-PAC=$\frac{1}{3}{S}_{△PAC}•h$=VP-ACD.
∴$\frac{1}{3}×\frac{\sqrt{15}}{2}×h$=1.
解得h=$\frac{2\sqrt{15}}{5}$.
点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.
练习册系列答案
相关题目
7.“$θ=2kπ+\frac{π}{4}(k∈Z)$”是“tanθ=1”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
1.大学生甲、乙、丙为唐山世园会的两个景区提供翻译服务,每个景区安排一名或两名大学生,则甲、乙被安排到不同景区的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{6}$ | D. | $\frac{2}{3}$ |
6.有一个质地均匀的四面体玩具,四个面分别标注了数字1、2、3、4,甲、乙两位学生进行如下游戏:甲先抛掷一次,记下四面体朝下的数字为,再由乙抛掷一次,朝下数字为b,若|a-b|≤1就称甲乙两人“默契配合”,则甲、乙两人“默契配合”的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{5}{8}$ |