题目内容
设函数f(x)=-
sin2x+
,A、B、C为△ABC的三个内角,若cosB=
,f(
)=-
,且C为锐角,则sinA=______.
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| C |
| 2 |
| 1 |
| 4 |
因为cosB=
,B∈(
,
),sinB=
=
;
又f(
)=-
,所以-
sinC+
=-
,sinC=
,
A、B、C为△ABC的三个内角,C<
,cosC=
,
sinA=sin(π-B-C)
=sin(B+C)
=sinBcosC+cosBsinC
=
×
+
×
=
,
故答案为:
.
| 1 |
| 3 |
| π |
| 3 |
| π |
| 2 |
1-(
|
2
| ||
| 3 |
又f(
| C |
| 2 |
| 1 |
| 4 |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| ||
| 2 |
A、B、C为△ABC的三个内角,C<
| π |
| 2 |
| 1 |
| 2 |
sinA=sin(π-B-C)
=sin(B+C)
=sinBcosC+cosBsinC
=
2
| ||
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| ||
| 2 |
=
2
| ||||
| 6 |
故答案为:
2
| ||||
| 6 |
练习册系列答案
相关题目