ÌâÄ¿ÄÚÈÝ
1£®ÎªºëÑﴫͳÎÄ»¯£¬Ä³Ð£¾ÙÐÐÊ«´Ê´óÈü£®¾¹ý²ã²ãÑ¡°Î£¬×îÖÕ¼×ÒÒÁ½È˽øÈë¾öÈü£¬Õù¶á¹ÚÑǾü£®¾öÈü¹æÔòÈçÏ£º¢Ù±ÈÈü¹²ÉèÓÐÎåµÀÌ⣻¢Ú±ÈÈüǰÁ½ÈË´ðÌâµÄÏȺó˳Ðòͨ¹ý³éÇ©¾ö¶¨ºó£¬Ë«·½ÂÖÁ÷´ðÌ⣬ÿ´Î»Ø´ðÒ»µÀ£¬£»¢ÛÈô´ð¶Ô£¬×Ô¼ºµÃ1·Ö£»Èô´ð´í£¬Ôò¶Ô·½µÃ1·Ö£»¢ÜÏȵà 3 ·ÖÕß»ñʤ£®ÒÑÖª¼×¡¢ÒÒ´ð¶ÔÿµÀÌâµÄ¸ÅÂÊ·Ö±ðΪ$\frac{2}{3}$ºÍ$\frac{3}{4}$£¬ÇÒÿ´Î´ðÌâµÄ½á¹ûÏ໥¶ÀÁ¢£®£¨¢ñ£©ÈôÒÒÏÈ´ðÌ⣬Çó¼×3£º0»ñʤµÄ¸ÅÂÊ£»
£¨¢ò£©Èô¼×ÏÈ´ðÌ⣬¼ÇÒÒËùµÃ·ÖÊýΪ X£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû EX£®
·ÖÎö £¨I£©Éè¡°ÒÒÏÈ´ðÌ⣬¼×3£º0»ñʤ¡±ÎªÊ¼þA£¬Ö»ÄÜÊÇ´ðÍê3µÀÌâ½áÊø£¬´ËʱÒÒ´ð´í2µÀÌ⣬¼×´ð¶Ô1µÀÌ⣮
¼´¿ÉµÃ³ö£®
£¨II£©ÓÉÌâÒâ¿ÉµÃ£ºXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£®
¢ÙX=0ʱ£¬Ôò´ðÍê3µÀÌâ½áÊø£¬´ËʱÒÒ´ð´í1µÀÌ⣬¼×´ð¶Ô2µÀÌ⣬´Ëʱ¼×µÃ3·Ö£¬ÒÒµÃ0·Ö£¬¼´¿ÉµÃ³ö£®
¢ÚX=1£¬Ôò´ðÍê4µÀÌâ½áÊø£¬´Ëʱ¹²ÓÐÒ»ÏÂ3ÖÖÇé¿ö£º¼×´íÒÒ´í¼×¶ÔÒÒ´í£»¼×¶ÔÒÒ´í¼×´íÒÒ´í£»¼×¶ÔÒÒ¶Ô¼×¶ÔÒÒ´í£®
¢ÛX=2£¬ÔòµÚ5´Î±ØÐëÊǼ״ð¶Ô£¬´Ëʱ¹²ÓÐÒ»ÏÂ6ÖÖÇé¿ö£º¼×¶ÔÒÒ¶Ô¼×¶ÔÒÒ¶Ô¼×¶Ô£»¼×¶ÔÒÒ¶Ô¼×´íÒÒ´í¼×¶Ô£»¼×¶ÔÒÒ´í¼×´íÒÒ¶Ô¼×¶Ô£»¼×´íÒÒ¶Ô¼×¶ÔÒÒ´í¼×¶Ô£»¼×´íÒÒ´í¼×¶ÔÒÒ¶Ô¼×¶Ô£»¼×´íÒÒ´í¼×´íÒÒ´í¼×¶Ô£®
¢ÜX=3£¬P£¨X=3£©=1-P£¨X=0£©-P£¨X=1£©-P£¨X=2£©£®
½â´ð ½â£º£¨I£©Éè¡°ÒÒÏÈ´ðÌ⣬¼×3£º0»ñʤ¡±ÎªÊ¼þA£¬Ö»ÄÜÊÇ´ðÍê3µÀÌâ½áÊø£¬´ËʱÒÒ´ð´í2µÀÌ⣬¼×´ð¶Ô1µÀÌ⣮
ÔòP1=$£¨1-\frac{3}{4}£©^{2}¡Á\frac{2}{3}$=$\frac{1}{24}$£®
£¨II£©ÓÉÌâÒâ¿ÉµÃ£ºXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£®
¢ÙX=0ʱ£¬Ôò´ðÍê3µÀÌâ½áÊø£¬´ËʱÒÒ´ð´í1µÀÌ⣬¼×´ð¶Ô2µÀÌ⣬´Ëʱ¼×µÃ3·Ö£¬ÒÒµÃ0·Ö£¬ÔòP£¨X=0£©=$\frac{2}{3}¡Á$$£¨1-\frac{3}{4}£©$¡Á$\frac{2}{3}$=$\frac{1}{9}$£®
¢ÚX=1£¬Ôò´ðÍê4µÀÌâ½áÊø£¬´Ëʱ¹²ÓÐÒ»ÏÂ3ÖÖÇé¿ö£º¼×´íÒÒ´í¼×¶ÔÒÒ´í£»¼×¶ÔÒÒ´í¼×´íÒÒ´í£»
¼×¶ÔÒÒ¶Ô¼×¶ÔÒÒ´í£®
¡àP£¨X=1£©=£¨1-$\frac{2}{3}$£©¡Á£¨1-$\frac{3}{4}$£©¡Á$\frac{2}{3}$¡Á£¨1-$\frac{3}{4}$£©+$\frac{2}{3}$¡Á£¨1-$\frac{3}{4}$£©¡Á$£¨1-\frac{2}{3}£©$¡Á£¨1-$\frac{3}{4}$£©+$\frac{2}{3}$¡Á$\frac{3}{4}$¡Á$\frac{2}{3}$¡Á£¨1-$\frac{3}{4}$£©=$\frac{1}{9}$£®
¢ÛX=2£¬ÔòµÚ5´Î±ØÐëÊǼ״ð¶Ô£¬´Ëʱ¹²ÓÐÒ»ÏÂ6ÖÖÇé¿ö£º¼×¶ÔÒÒ¶Ô¼×¶ÔÒÒ¶Ô¼×¶Ô£»¼×¶ÔÒÒ¶Ô¼×´íÒÒ´í¼×¶Ô£»¼×¶ÔÒÒ´í¼×´íÒÒ¶Ô¼×¶Ô£»¼×´íÒÒ¶Ô¼×¶ÔÒÒ´í¼×¶Ô£»¼×´íÒÒ´í¼×¶ÔÒÒ¶Ô¼×¶Ô£»¼×´íÒÒ´í¼×´íÒÒ´í¼×¶Ô£®
¡àP£¨X=2£©=$\frac{2}{3}¡Á£¨1-\frac{2}{3}£©¡Á\frac{3}{4}¡Á£¨1-\frac{3}{4}£©¡Á\frac{2}{3}$¡Á4+$£¨\frac{2}{3}£©^{3}¡Á£¨\frac{3}{4}£©^{2}$+$£¨1-\frac{2}{3}£©^{2}¡Á£¨1-\frac{3}{4}£©^{2}¡Á\frac{2}{3}$=$\frac{61}{216}$£®
¢ÜX=3£¬P£¨X=3£©=1-P£¨X=0£©-P£¨X=1£©-P£¨X=2£©=1-$\frac{1}{9}$-$\frac{1}{9}$-$\frac{61}{216}$=$\frac{107}{216}$£®
Æä·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{9}$ | $\frac{1}{9}$ | $\frac{61}{216}$ | $\frac{107}{216}$ |
µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ó뻥³âʼþµÄ¸ÅÂʼÆË㹫ʽ¡¢Ï໥¶ÔÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ¡¢Ëæ»ú±äÁ¿µÄ·Ö²¼Áм°ÆäÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | £¨2k-$\frac{2}{3}$£¬2k+$\frac{4}{3}$£©£¬k¡ÊZ | B£® | £¨2k¦Ð-$\frac{2}{3}$¦Ð£¬2k¦Ð+$\frac{4}{3}$¦Ð£©£¬k¡ÊZ | ||
| C£® | £¨4k-$\frac{2}{3}$£¬4k+$\frac{4}{3}$£©£¬k¡ÊZ | D£® | £¨4k¦Ð-$\frac{2}{3}$¦Ð£¬4k¦Ð+$\frac{4}{3}$¦Ð£©£¬k¡ÊZ |
| A£® | £¨-¡Þ£¬-1£© | B£® | £¨-1£¬+¡Þ£© | C£® | £¨0£¬$\frac{1}{e}$£© | D£® | £¨$\frac{1}{e}$£¬+¡Þ£© |
| A£® | {-1£¬0£¬1£¬2} | B£® | {-1£¬-2} | C£® | {1£¬2} | D£® | {0£¬1£¬2} |