题目内容

13.数列{an}的前n项和为Sn,2Sn+an=n2+2n+2,n∈N*
(Ⅰ)证明:{an-n}是等比数列,并求{an}的通项公式;
(Ⅱ)设Tn为数列{n(an-n)}的前n项和,求证:Tn$<\frac{3}{2}$.

分析 (Ⅰ)通过2Sn+an=n2+2n+2与2Sn-1+an-1=(n-1)2+2(n-1)+2作差,进而整理可知3an-3n=an-1-(n-1),计算即得结论;
(Ⅱ)通过(I)可知n(an-n)=2n•$\frac{1}{{3}^{n}}$,进而利用错位相减法计算、放缩即得结论.

解答 证明:(Ⅰ)∵2Sn+an=n2+2n+2,
∴当n≥2时,2Sn-1+an-1=(n-1)2+2(n-1)+2,
两式相减得:2an+an-an-1=2n+1,即3an=an-1+2n+1,
变形得:3an-3n=an-1-(n-1),
∴数列{an-n}是公比为$\frac{1}{3}$的等比数列,
又∵2S1+a1=12+2+2,即a1=$\frac{5}{3}$,a1-1=$\frac{2}{3}$,
∴an-n=$\frac{2}{3}$•$\frac{1}{{3}^{n-1}}$=2•$\frac{1}{{3}^{n}}$,
∴an=n+2•$\frac{1}{{3}^{n}}$;
(Ⅱ)由(I)可知n(an-n)=2n•$\frac{1}{{3}^{n}}$,
∴Tn=2•1•$\frac{1}{3}$+2•2•$\frac{1}{{3}^{2}}$+2•3•$\frac{1}{{3}^{3}}$+…+2n•$\frac{1}{{3}^{n}}$,
$\frac{1}{3}$Tn=2•1•$\frac{1}{{3}^{2}}$+2•2•$\frac{1}{{3}^{3}}$+…+2(n-1)•$\frac{1}{{3}^{n}}$+2n•$\frac{1}{{3}^{n+1}}$,
两式相减得:$\frac{2}{3}$Tn=2($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)-2n•$\frac{1}{{3}^{n+1}}$,
∴Tn=1+$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n-1}}$-n•$\frac{1}{{3}^{n}}$
=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$-n•$\frac{1}{{3}^{n}}$
=$\frac{3}{2}$-(n+$\frac{3}{2}$)•$\frac{1}{{3}^{n}}$
$<\frac{3}{2}$.

点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网