题目内容

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx)
,函数f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期,并求其图象对称中心的坐标;
(2)当0≤x≤
π
2
时,求函数f(x)的值域.
分析:(1)由向量的坐标运算可求得f(x)=sin(2x-
π
3
),从而可求f(x)的最小正周期,并求其图象对称中心的坐标;
(2)由0≤x≤
π
2
可得2x-
π
3
∈[-
π
3
3
],从而可求得函数f(x)的值域.
解答:解:(1)∵f(x)=sinxcosx-
3
cos2x+
3
2

=
1
2
sin2x-
3
2
(cos2x+1)+
3
2

=
1
2
sin2x-
3
2
cos2x
=sin(2x-
π
3
)                      …(2分)
∴f(x)的最小正周期为π,
令sin(2x-
π
3
)=0,,得2x-
π
3
=kπ,
∴x=
2
+
π
6
,(k∈Z).
故所求对称中心的坐标为(
2
+
π
6
,0),(k∈Z)-…(4分)
(2)∵0≤x≤
π
2
,∴-
π
3
<2x-
π
3
3
 …(6分)
∴-
3
2
≤sin(2x-
π
3
)≤1,
即f(x)的值域为[-
3
2
,1]…(8分)
点评:本题考查平面向量数量积的运算,考查两角和与差的正弦函数,考查正弦函数的定义域和值域及其周期,属于三角中的综合,考查分析问题、解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网