题目内容

15.函数f(x)=sinx-cos(x+$\frac{π}{6}$),x∈[0,π]的值域是[-$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

分析 通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.

解答 解:∵f(x)=sinx-cos(x+$\frac{π}{6}$)
=sinx-$\frac{\sqrt{3}}{2}$cosx+$\frac{1}{2}$sinx
=-$\frac{\sqrt{3}}{2}$cosx+$\frac{3}{2}$sinx
=$\sqrt{3}$sin(x-$\frac{π}{6}$).
x∈[0,π],∴x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$]
∴函数f(x)=sinx-cos(x+$\frac{π}{6}$)的值域为[-$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].
故答案为:[-$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

点评 本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力,利用两角差的正弦函数化为一个角的一个三角函数的形式是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网