题目内容

8.已知离散型随机变量X的分布列如下:
X012
Px4x5x
由此可以得到期望E(X)=1.4,方差D(X)=0.44.

分析 由离散型随机变量X的分布列的性质求出x=0.1,由此能求出数学期望E(X),进而能求出方差D(X).

解答 解:由离散型随机变量X的分布列,知:
x+4x+5x=1,解得x=0.1,
∴E(X)=0×0.1+1×0.4+2×0.5=1.4,
D(X)=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44.
故答案为:1.4,0.44.

点评 本题考查离散型随机变量的分布列的性质、数学期望、方差的求法,考查离散型随机变量的分布列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网