题目内容
【题目】如图,已知椭圆
的上、下顶点分别为A,B,点P在椭圆上,且异于点A,B,直线AP,BP与直线
分别交于点M,N,
(1)设直线AP,BP的斜率分别为
,求证:
为定值;
(2)求线段MN的长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.
![]()
【答案】(Ⅰ)
;(Ⅱ)
;(Ⅲ)
或
.
【解析】试题分析:(Ⅰ)
随点
运动而变化,故设点
表示
,进而化简整体消去变量;(Ⅱ)点
的位置由直线
,
生成,所以可用两直线方程解出交点坐标,求出
,它必是
的函数,利用基本不等式求出最小值; (Ⅲ)利用
的坐标求出圆的方程,方程必含有参数
,消去一个后,利用等式恒成立方法求出圆所过定点坐标.
试题解析:(Ⅰ)
,令
,则由题设可知
,
∴直线
的斜率
,
的斜率
,又点
在椭圆上,
所以
,(
),从而有
.
(Ⅱ)由题设可以得到直线
的方程为
,
直线
的方程为
,
由
, 由
,
直线
与直线
的交点
,直线
与直线
的交点
.
又
,![]()
等号当且仅当
即
时取到,故线段
长的最小值是
.
(Ⅲ)设点
是以
为直径的圆上的任意一点,则
,故有
,又
,所以以
为直径的圆的方程为
,令
解得
,
以
为直径的圆是否经过定点
和
.
练习册系列答案
相关题目
【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前
天参加抽奖活动的人数进行统计,
表示开业第
天参加抽奖活动的人数,得到统计表格如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
经过进一步统计分析,发现
与
具有线性相关关系.
(1)若从这
天中随机抽取两天,求至少有
天参加抽奖人数超过
的概率;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
,并估计若该活动持续
天,共有多少名顾客参加抽奖.
参考公式:
,
.