题目内容
| x2 |
| a2 |
| y2 |
| b2 |
A、y=±
| ||||
B、y=±
| ||||
C、y=±
| ||||
D、y=±
|
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c2=7a2,结合双曲线渐近线方程即可的结论.
解答:
解:根据双曲线的定义,可得|BF1|-|BF2|=2a,
∵△ABF2是等边三角形,即|BF2|=|AB|
∴|BF1|-|BF2|=2a,即|BF1|-|AB|=|AF1|=2a
又∵|AF2|-|AF1|=2a,
∴|AF2|=|AF1|+2a=4a,
∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°
∴|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos120°
即4c2=4a2+16a2-2×2a×4a×(-
)=28a2,
解得c2=7a2,则b=
=
=
a,
由此可得双曲线C的渐近线方程为y=±
x=±
x,
故选:B
∵△ABF2是等边三角形,即|BF2|=|AB|
∴|BF1|-|BF2|=2a,即|BF1|-|AB|=|AF1|=2a
又∵|AF2|-|AF1|=2a,
∴|AF2|=|AF1|+2a=4a,
∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°
∴|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos120°
即4c2=4a2+16a2-2×2a×4a×(-
| 1 |
| 2 |
解得c2=7a2,则b=
| c2-a2 |
| 6a2 |
| 6 |
由此可得双曲线C的渐近线方程为y=±
| b |
| a |
| 6 |
故选:B
点评:本题主要考查双曲线的定义和简单几何性质等知识,根据条件求出a,b的关系是解决本题的关键.
练习册系列答案
相关题目
在等差数列{an}中,若a2=2,a12=12,那么a4+a19=( )
| A、10 | B、23 | C、28 | D、60 |
若双曲线
-
=1渐近线上的一个动点P总在平面区域(x-m)2+y2≥16内,则实数m的取值范围是( )
| x2 |
| 9 |
| y2 |
| 16 |
| A、[-3,3] |
| B、(-∞,-3]∪[3,+∞) |
| C、[-5,5] |
| D、(-∞,5]∪[5,+∞) |
已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导函数f′(x)<2,则不等式f(lnx)<2lnx+1的解集为( )
| A、(1,+∞) |
| B、(e,+∞) |
| C、(0,1) |
| D、(0,e) |
设等差数列{an}的前n项和为Sn,若S9=72,则a1+a5+a9=( )
| A、36 | B、24 | C、16 | D、8 |
A、
| ||
B、
| ||
C、
| ||
D、
|