题目内容

设两个向量
a
=(λ+2,λ2-cox2α)和
b
=(m,
m
2
+sinα),其中λ,m,α为实数.若
a
=2
b
,则
λ
m
的取值范围是______.
a
=2
b
,∴λ+2=2m,①λ2-cox2α=m+2sinα.②
∴λ=2m-2代入②得,4m2-9m+4=cox2α+2sinα=1-sin2α+2sinα
=2-(sinα-1)2
∵-1≤sinα≤1,,∴0≤(sinα-1)2≤4,-4≤-(sinα-1)2≤0
∴-2≤2-(sinα-1)2≤2
∴-2≤4m2-9m+4≤2
分别解4m2-9m+4≥-2,与4m2-9m+4≤2,
得,
1
4
≤m≤2
1
2
1
m
≤4
λ
m
=
2m-2
m
=2-
2
m

∴-6≤2-
2
m
≤1
λ
m
的取值范围是[-6,1]
故答案为[-6,1]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网