题目内容
函数f(x)的图象向右平移一个单位长度,所得图象与y=ex关于y轴对称,则f(x)=
A. B. C. D.
D
已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为________.
下列说法正确的是( )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“∃x0∈R,x+x0-1<0”的否定是“∀x∈R,x2+x-1>0”
C.命题“若x=y,则sin x=sin y”的逆否命题为假命题
D.若“p或q”为真命题,则p,q中至少有一个为真命题
运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
函数的定义域是( )
A. B. C. D.,
已知偶函数在区间单调递减,则满足的x取值范围是________
已知函数
(1)求证:函数是R上的增函数
(2)求函数的值域
(3)令判定函数的奇偶性,并证明。
已知偶函数y= f (x)对于任意的x满足f(x)cosx+f(x)sinx>0(其中f (x)是函数f (x)的导函数),则下列不等式中成立的有
已知a、b、c∈R,且a+b+c=1,求证:(-1)(-1)·(-1)≥8.