题目内容
(2010•唐山三模)已知数列{an}、{bn}的前n项和分别为Sn、Tn,且Sn=2-2an,Tn=3-bn-
.
(I)求数列{an}、{bn}的通项公式;
(II)求
(a1b1+a2b2+a3b3+…+anbn).
| 1 |
| 2n-2 |
(I)求数列{an}、{bn}的通项公式;
(II)求
| lim |
| n→∞ |
分析:(I )由已知递推公式可求a1=
,b1=
当n≥2时,利用an=Sn-Sn-1,bn=Tn-Tn-1,可得an=
an-1,2bn=bn-1+
,通过等比数列的通项公式及构造等差数列可求an,bn
(II)由Wn=
+
+
+…+
,可考虑利用错位相减可求Wn,结合0<
<
可求极限
| 2 |
| 3 |
| 1 |
| 2 |
当n≥2时,利用an=Sn-Sn-1,bn=Tn-Tn-1,可得an=
| 2 |
| 3 |
| 1 |
| 2n-2 |
(II)由Wn=
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-1 |
| 3n |
| n+1 |
| 3n |
| n+1 |
| 2n2 |
解答:解:(I )由已知可得S1=a1=2-2a1,T1=b1=3- b1-
∴a1=
,b1=
当n≥2时,Sn=2-2an,Sn-1=2-2an-1
两式相减可得,an=Sn-Sn-1=-2an+2an-1
∴an=
an-1
∴数列{an}是以
为首项,以
为公比的等比数列
由等比数列的通项可得,an=
•(
)n-1=(
)n(3分)
当n≥2,Tn=3-bn-
.Tn-1=3-bn-1-
两式相减可得,bn=Tn-Tn-1=-bn+bn-1+
∴2bn=bn-1+
∴2nbn-2n-1bn-1=2,2b1=1
∴数列{2nbn}是以以1为首项,已2为公差的等差数列
2nbn=1+2(n-1)=2n-1
∴bn=
(6分)
(II)Wn=a1b1+a2b2+…+anbn
则Wn=
+
+
+…+
Wn=
+
+…+
两式相减可得,
Wn=
+2(
+
+…+
)-
=
+2•
=
-
∴Wn=1-
(9分)
当n≥2时,3n=(1+2)n=1+2Cn1+22Cn2+…+2nCnn>2Cn1+22Cn2=2n2
∴0<
<
∵
=0
∴
(1-
)=1(12分)
| 1 |
| 2-1 |
∴a1=
| 2 |
| 3 |
| 1 |
| 2 |
当n≥2时,Sn=2-2an,Sn-1=2-2an-1
两式相减可得,an=Sn-Sn-1=-2an+2an-1
∴an=
| 2 |
| 3 |
∴数列{an}是以
| 2 |
| 3 |
| 2 |
| 3 |
由等比数列的通项可得,an=
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
当n≥2,Tn=3-bn-
| 1 |
| 2n-2 |
| 2 |
| 2n-3 |
两式相减可得,bn=Tn-Tn-1=-bn+bn-1+
| 1 |
| 2n-2 |
∴2bn=bn-1+
| 1 |
| 2n-2 |
∴2nbn-2n-1bn-1=2,2b1=1
∴数列{2nbn}是以以1为首项,已2为公差的等差数列
2nbn=1+2(n-1)=2n-1
∴bn=
| 2n-1 |
| 2n |
(II)Wn=a1b1+a2b2+…+anbn
则Wn=
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 33 |
| 2n-1 |
| 3n |
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| 2n-1 |
| 3n+1 |
两式相减可得,
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
=
| 1 |
| 3 |
| ||||
1-
|
| 2 |
| 3 |
| 2(n+1) |
| 3n+1 |
∴Wn=1-
| n+1 |
| 3n |
当n≥2时,3n=(1+2)n=1+2Cn1+22Cn2+…+2nCnn>2Cn1+22Cn2=2n2
∴0<
| n+1 |
| 3n |
| n+1 |
| 2n2 |
∵
| lim |
| n→∞ |
| n+1 |
| 2n2 |
∴
| lim |
| n→∞ |
| n+1 |
| 3n |
点评:本题主要考查了利用递推公式转化数列的项与和之间的关系,等比数列与等差数列的通项公式的应用,错位相减求解数列的和及数列极限的求解,属于数列知识的综合应用.
练习册系列答案
相关题目