题目内容
已知| π |
| 4 |
| π |
| 2 |
| 4 |
| 5 |
| 12 |
| 13 |
分析:根据α和β的范围,分别求出α+β和α-β的范围,利用同角三角函数间的基本关系求出cos(α+β)和sin(α-β)的值,由2α=(α+β)+(α-β),利用两角和的正弦函数公式化简sin[(α+β)+(α-β)],然后把相应的值代入可求出sin2α的值;由2β=(α+β)-(α-β),利用两角差的余弦函数公式及两角差的正切函数公式分别表示出cos[(α+β)-(α-β)]和tan[(α+β)-(α-β)],把相应的值代入即可求出cos2β与tan2β的值.
解答:解:∵
<α<β<
,∴
<α+β<π,-
<α-β<0,
∴cos(α+β)=-
,sin(α-β)=-
,tan(α+β)=-
,tan(α-β)=-
,
则sin2α=sin[(α+β)+(α-β)]
=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)
=
×
+(-
)×(-
)
=
;
cos2β=cos[(α+β)-(α-β)]
=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=(-
)×
+
×(-
)
=-
;
tan2β=tan[(α+β)-(α-β)]
=
=
=-
.
| π |
| 4 |
| π |
| 2 |
| π |
| 2 |
| π |
| 4 |
∴cos(α+β)=-
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 3 |
| 5 |
| 12 |
则sin2α=sin[(α+β)+(α-β)]
=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)
=
| 4 |
| 5 |
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
=
| 63 |
| 65 |
cos2β=cos[(α+β)-(α-β)]
=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=(-
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 5 |
| 13 |
=-
| 56 |
| 65 |
tan2β=tan[(α+β)-(α-β)]
=
| tan(α+β)-tan(α-β) |
| 1+tan(α+β)tan(α-β) |
=
-
| ||||
1+(-
|
=-
| 33 |
| 56 |
点评:此题考查了两角和与差的正弦、余弦及正切函数公式,以及同角三角函数间的基本关系,灵活变换角度,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目
已知
<x<
,设a=21-sinx,b=2cosx,c=2tanx,则( )
| π |
| 4 |
| π |
| 2 |
| A、a<b<c |
| B、b<a<c |
| C、a<c<b |
| D、b<c<a |