题目内容
1.设集合A={1,3,7,8},B={1,5,8},则A∪B等于( )| A. | .{1,8} | B. | .{1,3,7,8} | C. | .{1,5,7,8} | D. | {1,3,5,7,8} |
分析 利用并集定义直接求解.
解答 解:∵集合A={1,3,7,8},B={1,5,8},
∴A∪B={1,3,5,7,8}.
故选:D.
点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.
练习册系列答案
相关题目
12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1、F2,焦距为2c(c>0),抛物线y2=2cx的准线交双曲线左支于A,B两点,且∠AOB=120°(O为坐标原点),则该双曲线的离心率为( )
| A. | $\sqrt{3}+1$ | B. | 2 | C. | $\sqrt{2}+1$ | D. | $\sqrt{5}+1$ |
9.已知的取值如表所示:
如果y与x线性相关,且线性回归方程$y=bx+\frac{13}{2}$,则$\stackrel{∧}{b}$=( )
| x | 2 | 3 | 4 |
| y | 6 | 4 | 5 |
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{4}$ | D. | $-\frac{5}{6}$ |
16.已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为( )
| A. | $\sqrt{\frac{2}{π}}$ | B. | $\sqrt{\frac{1}{π}}$ | C. | $\sqrt{2π}$ | D. | $\sqrt{π}$ |
6.函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在区间($\frac{π}{4}$,$\frac{π}{2}$)内是增函数,则( )
| A. | f($\frac{π}{4}$)=-1 | B. | f(x)的周期为$\frac{π}{2}$ | C. | ω的最大值为4 | D. | f($\frac{3π}{4}$)=0 |
11.已知函数f(x)=-x3+1+a($\frac{1}{e}$≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是( )
| A. | [0,e3-4] | B. | [0,$\frac{1}{{e}^{3}}$+2] | C. | [$\frac{1}{{e}^{3}}$+2,e3-4] | D. | [e3-4,+∞) |