ÌâÄ¿ÄÚÈÝ

¸ø¶¨ÏÂÁÐÃüÌ⣺
£¨1£©ÔÚ¡÷ABCÖУ¬¡ÏA£¼¡ÏBÊÇcos2A£¾cos2BµÄ³äÒªÌõ¼þ£»
£¨2£©¦Ë£¬¦ÌΪʵÊý£¬Èô¦Ë
a
=¦Ì
b
£¬Ôò
a
Óë
b
¹²Ïߣ»
£¨3£©ÈôÏòÁ¿
a
£¬
b
Âú×ã|
a
|=|
b
|£¬Ôò
a
=
b
»ò
a
=-
b
£»
£¨4£©º¯Êýy=sin(2x+
¦Ð
3
)sin(
¦Ð
6
-2x)
µÄ×îСÕýÖÜÆÚÊǦУ»
£¨5£©ÈôÃüÌâpΪ£º
1
x-1
£¾0£¬Ôò?p£º
1
x-1
¡Ü0
£¨6£©ÓÉa1=1£¬an=3n-1£¬Çó³öS1£¬S2£¬S3²ÂÏë³öÊýÁеÄǰnÏîºÍSnµÄ±í´ïʽµÄÍÆÀíÊǹéÄÉÍÆÀí£®
ÆäÖÐÕýÈ·µÄÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼­
·ÖÎö£ºÓÉ¡ÏA£¼¡ÏBµÃsinA£¼sinB£¬È»ºó½áºÏͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØÏµÊ½Åжϣ¨1£©£»¾ÙÌØÀý˵Ã÷£¨2£©£¨3£©´íÎó£»
ÀûÓÃÈý½Çº¯ÊýµÄÓÕµ¼¹«Ê½¼°¶þ±¶½ÇµÄÕýÏÒ»¯¼òºóÇóµÃÖÜÆÚ˵Ã÷£¨4£©´íÎó£»°ÑÃüÌâpµÈ¼Ûת»¯ºó˵Ã÷£¨5£©´íÎó£¬Ö±½Ó¹éÄÉÍÆÀíµÄ¶¨Òå˵Ã÷£¨6£©ÕýÈ·£®
½â´ð£º ½â£º¶ÔÓÚ£¨1£©£¬ÔÚ¡÷ABCÖУ¬¡ÏA£¼¡ÏB£¬ÔòsinA£¼sinB£¬¼´sin2A£¼sin2B£¬1-2sin2A£¾1-2sin2B£¬
¹Êcos2A£¾cos2B£¬·´Ö®³ÉÁ¢£¬Ôò¡ÏA£¼¡ÏBÊÇcos2A£¾cos2BµÄ³äÒªÌõ¼þ£¬ÃüÌ⣨1£©ÕýÈ·£»
¶ÔÓÚ£¨2£©£¬¦Ë£¬¦ÌΪʵÊý£¬Èô¦Ë
a
=¦Ì
b
£¬Ôò
a
Óë
b
¹²Ïß´íÎ󣬵±¦Ë=¦Ì=0ʱ£¬
a
£¬
b
²»¹²Ïߣ¬ÈÔÓЦË
a
=¦Ì
b
£»
¶ÔÓÚ£¨3£©£¬ÈôÏòÁ¿
a
£¬
b
Âú×ã|
a
|=|
b
|£¬Ôò
a
=
b
»ò
a
=-
b
´íÎó£¬ÈçÕý·½ÐÎÁ½Áڱ߹¹³ÉµÄÏòÁ¿Âú×ã|
a
|=|
b
|£¬µ«
a
¡Ù
b
£¬
a
¡Ù-
b
£»
¶ÔÓÚ£¨4£©£¬º¯Êýy=sin(2x+
¦Ð
3
)sin(
¦Ð
6
-2x)
=
1
2
¡Á2sin(2x+
¦Ð
3
)cos(2x+
¦Ð
3
)
=
1
2
sin(4x+
2¦Ð
3
)
£¬Æä×îСÕýÖÜÆÚÊÇ
¦Ð
2
£¬ÃüÌ⣨4£©´íÎó£»
¶ÔÓÚ£¨5£©£¬ÈôÃüÌâpΪ£º
1
x-1
£¾0£¬Ôò?p£º
1
x-1
¡Ü0´íÎó£¬Ô­ÒòÊÇ
1
x-1
£¾0µÃµ½x£¾1£¬Æä·ñ¶¨ÊÇx¡Ü1£¬¶ø
1
x-1
¡Ü0²»º¬x=1£»
¶ÔÓÚ£¨6£©£¬ÓÉa1=1£¬an=3n-1£¬Çó³öS1£¬S2£¬S3²ÂÏë³öÊýÁеÄǰnÏîºÍSnµÄ±í´ïʽµÄÍÆÀíÊǹéÄÉÍÆÀí£¬ÕýÈ·£®
¹ÊÑ¡£ºB£®
µãÆÀ£º±¾Ì⿼²éÁËÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁËÆ½ÃæÏòÁ¿¹²ÏßµÄÌõ¼þ£¬¿¼²éÁËÈý½Çº¯ÊýÖÜÆÚµÄÇ󷨣¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø