题目内容

在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高二年级有男生1000人,女生800人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频数统计表如下:
表一:男生                                    表二:女生
等级 优秀 合格 尚待改进 等级 优秀 合格 尚待改进
频数 15 x     5 频数  15   3    y
男生 女生 总计
优秀 15 15 30
非优秀
总计 45
(1)计算x,y的值;
(2)由表一表二中统计数据完成2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
参考公式:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)临界值表:
P(x2≥k) 0.100 0.050 0.010
k 2.706 3.841 6.635
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(1)根据条件知道从男生和女生各自抽取的人数,做出频率分布表中的未知数;
(2)根据所给的条件写出列联表,根据列联表做出观测值,把观测值同临界值进行比较,得到没有90%的把握认为“测评结果优秀与性别有关”.
解答: 解:(1)设从高一年级男生中抽取m人,则
m
1000
=
45
1000+800

∴m=25,…(2分)
∴从高一年级女生中抽取20人,
∴x=25-20=5,y=20-18=2 …(6分)
(2)由(1)得2×2列联表为
男生 女生 总计
优秀 15 15 30
非优秀 10 5 15
总计 25 20 45
∵x2=
45×(15×5-15×10)2
30×15×25×20
=1.125<2.706,…(10分)
∴没有90%的把握认为“测评结果优秀与性别有关”. …(12分)
点评:本题主要考查独立性检验的应用,解题的关键是正确运算出观测值,理解临界值对应的概率的意义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网