题目内容
5.已知i是虚数单位,若z1=2+i,z2=1-i,则$z=\frac{z_1}{z_2}$在复平面内的对应点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 把z1=2+i,z2=1-i代入$z=\frac{z_1}{z_2}$,再由复数代数形式的乘除运算化简复数z,求出z在复平面内的对应点的坐标,则答案可求.
解答 解:由z1=2+i,z2=1-i,
得$z=\frac{z_1}{z_2}$=$\frac{2+i}{1-i}=\frac{(2+i)(1+i)}{(1-i)(1+i)}=\frac{1+3i}{2}=\frac{1}{2}+\frac{3}{2}i$,
则z在复平面内的对应点的坐标为:($\frac{1}{2}$,$\frac{3}{2}$),位于第一象限.
故选:A.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关题目
15.阅读下列程序框图,输出的结果s的值为( )

| A. | $\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
16.若复数z满足$\frac{z+2i}{z}$=2+3i,其中i是虚数单位,则$\overline z$=( )
| A. | $\frac{2}{5}$+$\frac{3}{5}$i | B. | $\frac{3}{5}$+$\frac{2}{5}$i | C. | $\frac{3}{5}$+$\frac{1}{5}$i | D. | $\frac{3}{5}$-$\frac{1}{5}$i |
20.要得到函数y=sin(2x-$\frac{π}{4}$)的图象,只要将函数y=sin2x的图象( )
| A. | 向左平移$\frac{π}{4}$ | B. | 向右平移$\frac{π}{4}$ | C. | 向左平移$\frac{π}{8}$ | D. | 向右平移$\frac{π}{8}$ |
14.已知点N(x,y)为圆x2+y2=1上任意一点,则$\frac{y}{x+2}$的取值范围( )
| A. | [$-\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{3}}}{3}$] | B. | [-$\sqrt{3}$,$\sqrt{3}$] | C. | (-∞,$-\frac{{\sqrt{3}}}{3}$]∪[$\frac{{\sqrt{3}}}{3}$,+∞) | D. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) |