ÌâÄ¿ÄÚÈÝ

10£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnºÍͨÏîanÂú×ã${S_n}=\frac{1}{2}£¨1-{a_n}£©$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ²¢Ö¤Ã÷${S_n}£¼\frac{1}{2}$£»
£¨2£©É躯Êý$f£¨x£©={log_{\frac{1}{3}}}x$£¬bn=f£¨a1£©+f£¨a2£©+¡­+f£¨an£©£¬Èô${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+\frac{1}{b_3}+¡­+\frac{1}{b_n}$£®ÇóTn£®

·ÖÎö £¨1£©Óɵ±n¡Ý2ʱ£¬Sn-1=$\frac{1}{2}$£¨1-an-1£©£¬an=Sn-Sn-1£¬ÕûÀíµÃ£º2an=-an+an-1£¬$\frac{a_n}{{{a_{n-1}}}}=\frac{1}{3}$£¬µ±n=1ʱ£¬${a_1}=\frac{1}{3}$£¬ÊýÁÐ{an}ÊÇÊ×Ïî${a_1}=\frac{1}{3}$£¬¹«±ÈΪ$\frac{1}{3}$µÄµÈ±ÈÊýÁУ¬¼´¿ÉÇóµÃ${a_n}=\frac{1}{3}¡Á{£¨\frac{1}{3}£©^{n-1}}={£¨\frac{1}{3}£©^n}$£¬ÓɵȱÈÊýÁÐǰnÏîºÍ¹«Ê½¿ÉÖª£º${S_n}=\frac{{\frac{1}{3}[{1-{{£¨\frac{1}{3}£©}^n}}]}}{{1-\frac{1}{3}}}=\frac{1}{2}[{1-{{£¨\frac{1}{3}£©}^n}}]$£¬ÓÉ$1-{£¨\frac{1}{3}£©^n}£¼1$£¬Ôò$\frac{1}{2}[{1-{{£¨\frac{1}{3}£©}^n}}]£¼\frac{1}{2}$£¬¼´¿ÉÖ¤Ã÷${S_n}£¼\frac{1}{2}$£»
£¨2£©${b_n}={log_{\frac{1}{3}}}{a_1}+{log_{\frac{1}{3}}}{a_2}+¡­+{log_{\frac{1}{3}}}{a_n}={log_{\frac{1}{3}}}£¨{a_1}{a_2}¡­{a_n}£©$=${log_{\frac{1}{3}}}{£¨\frac{1}{3}£©^{1+2+¡­+n}}$=$1+2+¡­+n=\frac{n£¨1+n£©}{2}$£¬Ôò$\frac{1}{b_n}=\frac{2}{n£¨1+n£©}=2£¨\frac{1}{n}-\frac{1}{n+1}£©$£¬²ÉÓá°ÁÑÏî·¨¡±¼´¿ÉÇóµÃTn£®

½â´ð ½â£º£¨1£©µ±n¡Ý2ʱ£¬Sn-1=$\frac{1}{2}$£¨1-an-1£©£¬an=Sn-Sn-1£¬
¡à${a_n}=\frac{1}{2}£¨1-{a_n}£©-\frac{1}{2}£¨1-{a_{n-1}}£©$=$-\frac{1}{2}{a_n}+\frac{1}{2}{a_{n-1}}$£¬ÕûÀíµÃ£º2an=-an+an-1£¬
¡à$\frac{a_n}{{{a_{n-1}}}}=\frac{1}{3}$£¬
µ±n=1ʱ£¬
${S_1}={a_1}=\frac{1}{2}£¨1-{a_1}£©$£¬½âµÃ£º${a_1}=\frac{1}{3}$£¬
¡àÊýÁÐ{an}ÊÇÊ×Ïî${a_1}=\frac{1}{3}$£¬¹«±ÈΪ$\frac{1}{3}$µÄµÈ±ÈÊýÁУ¬
¡à${a_n}=\frac{1}{3}¡Á{£¨\frac{1}{3}£©^{n-1}}={£¨\frac{1}{3}£©^n}$£¬
Ö¤Ã÷£ºÓɵȱÈÊýÁÐǰnÏʽ¿ÉÖª£º${S_n}=\frac{{\frac{1}{3}[{1-{{£¨\frac{1}{3}£©}^n}}]}}{{1-\frac{1}{3}}}=\frac{1}{2}[{1-{{£¨\frac{1}{3}£©}^n}}]$£¬
¡ß$1-{£¨\frac{1}{3}£©^n}£¼1$£¬
¡à$\frac{1}{2}[{1-{{£¨\frac{1}{3}£©}^n}}]£¼\frac{1}{2}$£¬
¡à${S_n}£¼\frac{1}{2}$£®
£¨2£©¡ß$f£¨x£©={log_{\frac{1}{3}}}x$£¬
¡à${b_n}={log_{\frac{1}{3}}}{a_1}+{log_{\frac{1}{3}}}{a_2}+¡­+{log_{\frac{1}{3}}}{a_n}={log_{\frac{1}{3}}}£¨{a_1}{a_2}¡­{a_n}£©$=${log_{\frac{1}{3}}}{£¨\frac{1}{3}£©^{1+2+¡­+n}}$£¬
=$1+2+¡­+n=\frac{n£¨1+n£©}{2}$£®
¡ß$\frac{1}{b_n}=\frac{2}{n£¨1+n£©}=2£¨\frac{1}{n}-\frac{1}{n+1}£©$£¬
¡à${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+¡­+\frac{1}{b_n}=2[{£¨1-\frac{1}{2}£©+£¨\frac{1}{2}-\frac{1}{3}£©+¡­+£¨\frac{1}{n}-\frac{1}{n+1}£©}]=\frac{2n}{n+1}$£¬
¡àTn=$\frac{2n}{n+1}$£®

µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁÐǰnÏîºÍ¹«Ê½µÄÓ¦Óã¬ÇóµÈ²îÊýÊýÁеÄǰnÏîºÍ£¬¿¼²é¡°ÁÑÏî·¨¡±ÇóÊýÁеÄǰnÏîºÍ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø