题目内容
12.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-1,x≤1\\{log_2}(x-1),x>1\end{array}\right.$则$f(f(\frac{7}{3}))$=-$\frac{2}{3}$.分析 先求出f($\frac{7}{3}$)=$lo{g}_{2}\frac{1}{3}$,从而$f(f(\frac{7}{3}))$=f($lo{g}_{2}\frac{1}{3}$)=${2}^{lo{g}_{2}\frac{1}{3}}$-1,由此能求出结果.
解答 解:∵函数$f(x)=\left\{\begin{array}{l}{2^x}-1,x≤1\\{log_2}(x-1),x>1\end{array}\right.$,
∴f($\frac{7}{3}$)=$lo{g}_{2}\frac{1}{3}$,
$f(f(\frac{7}{3}))$=f($lo{g}_{2}\frac{1}{3}$)=${2}^{lo{g}_{2}\frac{1}{3}}$-1=$\frac{1}{3}-1=-\frac{2}{3}$.
故答案为:-$\frac{2}{3}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
2.2017年离考考前第二次适应性训练考试结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机柚取的4名高三同学中,恰有2名冋学的英语成绩超过95分的概率是( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{8}$ |
7.已知cosα=$\frac{3}{5}$,cos(α-β)=$\frac{{7\sqrt{2}}}{10}$,且0<β<α<$\frac{π}{2}$,那么β=( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
3.微信是腾讯公司推出的一种手机通讯软件,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户为“A组”,否则为“B组”,调查结果如下:
(Ⅰ)根据以上数据,能否有60%的把握认为“A组”用户与“性别”有关?
(Ⅱ)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“A组”和“B组”的人数;
(Ⅲ)从(Ⅱ)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,求“这3人中既有A组又有B组”的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.
参考数据:
| A组 | B组 | 合计 | |
| 男性 | 26 | 24 | 50 |
| 女性 | 30 | 20 | 50 |
| 合计 | 56 | 44 | 100 |
(Ⅱ)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“A组”和“B组”的人数;
(Ⅲ)从(Ⅱ)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,求“这3人中既有A组又有B组”的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.
参考数据:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| $\overrightarrow{OA}•\overrightarrow{OB}=0$ | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |