题目内容

12.已知数列{an}共有3n(n∈N*)项,记f(n)=a1+a2+…+a3n,对任意的k∈N*,1≤k≤3n,都有ak∈{0,1},且对于给定的正整数p(p≥2),f(n)是p的整数倍,把满足上述条件的数列{an}的个数记为Tn
(1)当p=2时,求T2的值;
(2)当p=3时,求证:Tn=$\frac{1}{3}$[8n+2(-1)n].

分析 (1)根据组合数公式计算;
(2)运用数学归纳法和组合数公式的性质证明.

解答 解:(1)当n=2时,{an}共有6项,当p=2时,f(n)为偶数,
∴{an}中1的个数为偶数,
∴T2=${C}_{6}^{0}$+${C}_{6}^{2}$+${C}_{6}^{4}$+${C}_{6}^{6}$=32.
(2)证明:p=3时,{an}中1的个数为3的倍数,
∴当n=1时,T1=${C}_{3}^{0}$+${C}_{3}^{3}$=2,显然结论成立,
假设n=k时,结论成立,即Tk=$\frac{1}{3}$[8k+2(-1)k],
即Tk=${C}_{3k}^{0}$+${C}_{3k}^{3}$+C${\;}_{3k}^{6}$+…+${C}_{3k}^{3k}$=$\frac{1}{3}$[8k+2(-1)k],
∴当n=k+1时,Tk+1=${C}_{3k+3}^{0}$+${C}_{3k+3}^{3}$+…+${C}_{3k+3}^{3k+3}$,
又${C}_{3k+3}^{0}{=C}_{3k}^{0}=1$,
${C}_{3k+3}^{3}$=${C}_{3k}^{3}$+3${C}_{3k}^{2}$+3${C}_{3k}^{1}$+${C}_{3k}^{0}$,
${C}_{3k+3}^{6}$=${C}_{3k}^{6}$+3C${\;}_{3k}^{5}$+3C${\;}_{3k}^{4}$+${C}_{3k}^{3}$,
${C}_{3k+3}^{9}$=${C}_{3k}^{9}$+3${C}_{3k}^{8}$+3${C}_{3k}^{7}$+${C}_{3k}^{6}$,

${C}_{3k+3}^{3k}$=${C}_{3k}^{3k}$+3C${\;}_{3k}^{3k-1}$+3${C}_{3k}^{3k-2}$+${C}_{3k}^{3k-3}$,
C${\;}_{3k+3}^{3k+3}$=${C}_{3k}^{3k}$,
∴Tk+1=2(${C}_{3k}^{0}$+${C}_{3k}^{3}+$${C}_{3k}^{6}$+…+C${\;}_{3k}^{3k}$)+3(C${\;}_{3k}^{1}$+${C}_{3k}^{2}$+C${\;}_{3k}^{4}$+${C}_{3k}^{5}$+…+${C}_{3k}^{3k-2}$+${C}_{3k}^{3k-1}$)
=2Tk+3(${C}_{3k}^{0}+$C${\;}_{3k}^{1}$+${C}_{3k}^{2}$+…+${C}_{3k}^{3k}$-${C}_{3k}^{0}$-${C}_{3k}^{3}$-${C}_{3k}^{6}$-…-${C}_{3k}^{3k}$)
=2Tk+3(23k-Tk
=3•8k-Tk
=3•8k-$\frac{1}{3}$[8k+2(-1)k]=$\frac{1}{3}$[8k+1-2(-1)k]=$\frac{1}{3}$[8k+1+2(-1)k+1]
∴当n=k+1时结论成立,
∴Tn=$\frac{1}{3}$[8n+2(-1)n].

点评 本题考查了组合数公式的性质与应用,数学归纳法证明,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网