题目内容
已知数列{ak}满足:a1=
且ak+1=ak+
(k=1,2,…,n-1)其中n是一个给定的正整数.
(1)证明:数列{ak}是一个单调数列;
(2)证明:对一切1<m<n,m∈N有:
<am<
.
| 1 |
| 2 |
| 1 |
| n |
| a | 2 k |
(1)证明:数列{ak}是一个单调数列;
(2)证明:对一切1<m<n,m∈N有:
| n+1 |
| 2n-m+3 |
| n |
| 2n-m+1 |
分析:(1)由ak+1=ak+
,知ak≠0,由a1=
且ak+1=ak+
(k=1,2,…,n-1),知ak+1-ak=ak+
-ak=
>0,由此能够证明数列{ak}是一个单调数列.
(2)由递推公式,得
=
=
-
,
-
<
,令k=1,2,3,…,n-1,得:
-
=
>
,所以
<
-
<
,再令k=1,2,3,…,m-1,能够证明对一切1<m<n,m∈N有:
<am<
.
| 1 |
| n |
| a | 2 k |
| 1 |
| 2 |
| 1 |
| n |
| a | 2 k |
| 1 |
| n |
| a | 2 k |
| 1 |
| n |
| a | 2 k |
(2)由递推公式,得
| 1 |
| ak+1 |
| n |
| ak(n+ak) |
| 1 |
| ak |
| 1 |
| n+ak |
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| n |
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| n+ak |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| n |
| n+1 |
| 2n-m+3 |
| n |
| 2n-m+1 |
解答:证明:(1)∵ak+1=ak+
(k=1,2,…,n-1),∴ak≠0.∵a1=
,
∴ak+1-ak=ak+
-ak=
>0,故数列{ak}是一个递增数列,即数列{ak}是一个单调数列.
(2)由递推公式,得
=
=
-
,
∴
-
<
,
令k=1,2,3,…,n-1,有
-
<
,
-
<
,
…
-
<
,
∴
-
<
,
∴
-
<
,∴an<1,
从而有:
-
=
>
,
∴
<
-
<
,
令k=1,2,3,…,m-1,有
<
-
<
,
<
-
<
,
…
<
-
<
,
∴
<
-
<
,将a1=
代入整理得
<am<
∴对一切1<m<n,m∈N有:
<am<
.
| 1 |
| n |
| a | 2 k |
| 1 |
| 2 |
∴ak+1-ak=ak+
| 1 |
| n |
| a | 2 k |
| 1 |
| n |
| a | 2 k |
(2)由递推公式,得
| 1 |
| ak+1 |
| n |
| ak(n+ak) |
| 1 |
| ak |
| 1 |
| n+ak |
∴
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| n |
令k=1,2,3,…,n-1,有
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| n |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| n |
…
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| n |
∴
| 1 |
| a1 |
| 1 |
| an |
| n-1 |
| n |
∴
| 1 |
| a1 |
| 1 |
| an |
| n-1 |
| n |
从而有:
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| n+ak |
| 1 |
| n+1 |
∴
| 1 |
| n+1 |
| 1 |
| ak |
| 1 |
| ak+1 |
| 1 |
| n |
令k=1,2,3,…,m-1,有
| 1 |
| n+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| n |
…
| 1 |
| n+1 |
| 1 |
| am-1 |
| 1 |
| am |
| 1 |
| n |
∴
| m-1 |
| n+1 |
| 1 |
| a1 |
| 1 |
| am |
| m-1 |
| n |
| 1 |
| 2 |
| n+1 |
| 2n-m+3 |
| n |
| 2n-m+1 |
∴对一切1<m<n,m∈N有:
| n+1 |
| 2n-m+3 |
| n |
| 2n-m+1 |
点评:本题考查数列是单调数列的证明,考查不等式的证明.本题考查数列和不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目