题目内容
某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
![]()
频率分布表
| 组别 | 分组 | 频数 | 频率 |
| 第1组 | [50,60) | 8 | 0.16 |
| 第2组 | [60,70) | a | |
| 第3组 | [70,80) | 20 | 0.40 |
| 第4组 | [80,90) |
| 0.08 |
| 第5组 | [90,100] | 2 | b |
|
| 合计 |
(1)写出a,b,x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,求所抽取的2名同学来自同一组的概率;
(3)在(2)的条件下,设ξ表示所抽取的2名同学中来自第5组的人数,求ξ的分布列及其数学期望.
解:(1)由题意可知,a=16,b=0.04,x=0.032,y=0.004,
(2)由题意可知,第4组有4人,第5组有2人,共6人.
从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学有C
=15种情况.
设事件A:随机抽取的2名同学来自同一组,则P(A)=
=
.
所以,随机抽取的2名同学来自同一组的概率是
.
(3)由(2)可知,ξ的可能取值为0,1,2,则
P(ξ=0)=![]()
所以,ξ的分布列为
| ξ | 0 | 1 | 2 |
| P |
|
|
|
随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表: 性别与读营养说明列联表
| 男 | 女 | 总计 | |
| 读营养说明 | 16 | 8 | 24 |
| 不读营养说明 | 4 | 12 | 16 |
| 总计 | 20 | 20 | 40 |
⑴根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
⑵从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数
的分布列及其均值(即数学期望).
(注:
,其中
为样本容量.)