ÌâÄ¿ÄÚÈÝ
3£®¶ÔÓÚ¶¨ÒåÔÚ[0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©£¬Èôº¯Êýy=f£¨x£©-£¨ax+b£©Âú×㣺¢ÙÔÚÇø¼ä[0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»¢Ú´æÔÚ³£Êýp£¬Ê¹ÆäÖµÓòΪ£¨0£¬p]£¬Ôò³Æº¯Êýg£¨x£©=ax+bΪf£¨x£©µÄ¡°½¥½üº¯Êý¡±£»£¨I£©Ö¤Ã÷£ºº¯Êý g£¨x£©=x+1ÊǺ¯Êýf£¨x£©=$\frac{{x}^{2}+2x+3}{x+1}$£¬x¡Ê[0£¬+¡Þ£©µÄ½¥½üº¯Êý£¬²¢Çó´ËʱʵÊýpµÄÖµ£»
£¨¢ò£©Èôº¯Êýf£¨x£©=$\sqrt{{x}^{2}+1}$£¬x¡Ê[0£¬+¡Þ£©£¬g£¨x£©=ax£¬Ö¤Ã÷£ºµ±0£¼a£¼1ʱ£¬g£¨x£©²»ÊÇf£¨x£©µÄ½¥½üº¯Êý£®
·ÖÎö £¨1£©Í¨¹ýÁît£¨x£©=f£¨x£©-g£¨x£©£¬ÀûÓá°½¥½üº¯Êý¡±µÄ¶¨ÒåÖðÌõÑéÖ¤¼´¿É£»
£¨2£©Í¨¹ý¼Çt£¨x£©=f£¨x£©-g£¨x£©£¬½áºÏ¡°½¥½üº¯Êý¡±µÄ¶¨Òå¿ÉÖª$\frac{2x}{\sqrt{{x}^{2}+1}}$£¼a£¬ÎÊÌâת»¯ÎªÇóµ±x¡Ê[0£¬+¡Þ£©Ê±q£¨x£©=$\frac{2x}{\sqrt{{x}^{2}+1}}$µÄ×î´óÖµÎÊÌ⣬½ø¶ø¼ÆËã¿ÉµÃaµÄ·¶Î§£¬´Ó¶øÖ¤Ã÷½áÂÛ£®
½â´ð £¨1£©Ö¤Ã÷£ºÒÀÌâÒ⣬Áît£¨x£©=f£¨x£©-g£¨x£©£¬
Ôòt£¨x£©=$\frac{{x}^{2}+2x+3}{x+1}$-£¨x+1£©=$\frac{2}{x+1}$£¬
¡ßt¡ä£¨x£©=-$\frac{2}{£¨{x+1£©}^{2}}$£¼0£¬
¡àt£¨x£©ÔÚÇø¼ä[0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÇÒ$\underset{lim}{x¡ú¡Þ}$t£¨x£©=0£¬
¡à0£¼t£¨x£©¡Üt£¨0£©=2£¬
ÓÚÊǺ¯Êýg£¨x£©=x+1ÊǺ¯Êýf£¨x£©=$\frac{{x}^{2}+2x+3}{x+1}$£¬
x¡Ê[0£¬+¡Þ£©µÄ½¥½üº¯Êý£¬´ËʱʵÊýp=2£»
£¨2£©Ö¤Ã÷£º¼Çt£¨x£©=f£¨x£©-g£¨x£©=$\sqrt{{x}^{2}+1}$-ax£¬
Ôòt¡ä£¨x£©=$\frac{2x}{\sqrt{{x}^{2}+1}}$-a£¬
¡ßº¯Êýf£¨x£©=$\sqrt{{x}^{2}+1}$£¬x¡Ê[0£¬+¡Þ£©µÄ½¥½üº¯ÊýÊÇg£¨x£©=ax£¬
¡àµ±x¡Ê[0£¬+¡Þ£©Ê±t¡ä£¨x£©£¼0£¬¼´$\frac{2x}{\sqrt{{x}^{2}+1}}$£¼a£¬
ÁÊýq£¨x£©=$\frac{2x}{\sqrt{{x}^{2}+1}}$£¬ÆäÖÐx¡Ê[0£¬+¡Þ£©£¬
µ±x=0ʱ£¬q£¨x£©=0£»
µ±x¡Ù0ʱ£¬q£¨x£©=$\frac{2x}{\sqrt{{x}^{2}+1}}$=$\frac{2}{\sqrt{\frac{{x}^{2}+1}{{x}^{2}}}}$=$\frac{2}{\sqrt{1+\frac{1}{{x}^{2}}}}$ÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
ÇÒ$\underset{lim}{x¡ú¡Þ}$q£¨x£©=2£¬
¡àa¡Ý2£®
µ±0£¼a£¼1ʱ£¬g£¨x£©²»ÊÇf£¨x£©µÄ½¥½üº¯Êý£®
µãÆÀ ±¾Ì⿼²éж¨Ò庯ÊýµÄÀí½âÓëÓ¦Óã¬Éæ¼°µ¼ÊýµÄ¼ÆË㣬º¯Êýµ¥µ÷ÐÔ¼°¼«ÏÞ֪ʶ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{3}{4}$ |
| A£® | 2¡Á£¨31008-1£© | B£® | 2¡Á31008 | C£® | $\frac{{{3^{2016}}-1}}{2}$ | D£® | $\frac{{{3^{2016}}+1}}{2}$ |
| A£® | $\sqrt{21}$ | B£® | 2$\sqrt{21}$ | C£® | $\sqrt{29}$ | D£® | 2$\sqrt{29}$ |