题目内容
12.已知实数a,b∈R且a2-ab+b2=3,则$\frac{(1+ab)^{2}}{{a}^{2}+{b}^{2}+1}$的最大值为$\frac{16}{7}$.分析 由基本不等式,结合a2-ab+b2=3可得-1≤ab≤3;化简$\frac{(1+ab)^{2}}{{a}^{2}+{b}^{2}+1}$=$\frac{(ab+1)^{2}}{ab+3+1}$=(ab+4)+$\frac{9}{ab+4}$-6,从而利用对勾函数的性质求最值.
解答 解:∵a2-ab+b2=3,
∴a2+b2=3+ab,
∴3+ab≥2ab且3+ab≥-2ab,
即-1≤ab≤3;
$\frac{(1+ab)^{2}}{{a}^{2}+{b}^{2}+1}$=$\frac{(ab+1)^{2}}{ab+3+1}$
=(ab+4)+$\frac{9}{ab+4}$-6,
∵3≤ab+4≤7,
∴当ab+4=7时有最大值为7+$\frac{9}{7}$-6=$\frac{16}{7}$,
故答案为:$\frac{16}{7}$.
点评 本题考查了基本不等式与函数的性质,同时考查了转化思想的应用.
练习册系列答案
相关题目
2.已知函数f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{-{x}^{2}+2x,x>0}\end{array}\right.$,若方程f2(x)+bf(x)+$\frac{1}{4}$=0有六个相异实根,则实数b的取值范围( )
| A. | (-2,0) | B. | (-2,-1) | C. | (-$\frac{5}{4}$,0) | D. | (-$\frac{5}{4}$,-1) |
1.已知A、B为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1与双曲线$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1的公共顶点M、N分别为椭圆和双曲线上一点(异于点A、B),$\overrightarrow{AM}$$+\overrightarrow{BM}$=λ($\overrightarrow{AN}$$+\overrightarrow{BN}$)(λ∈R),设直线AM、BM、AN、BN的斜率分别为k1、k2、k3、k4,则k1+k2+k3+k4=( )
| A. | -$\frac{3}{2}$ | B. | 0 | C. | $\frac{3}{2}$ | D. | $\frac{4\sqrt{3}}{3}$ |
2.已知复数z1=a+2i,z2=-2+i,且|z1|=|z2|,则实数a等于( )
| A. | 1 | B. | -1 | C. | 1或-1 | D. | ±1或0 |