题目内容
6.$\root{3}{-a}•\root{6}{a}$=( )| A. | $-\sqrt{a}$ | B. | $-\sqrt{-a}$ | C. | $\sqrt{-a}$ | D. | $\sqrt{a}$ |
分析 先把根指数化为分数指数,再根据指数幂的运算性质计算即可.
解答 解:依题意,可知a≥0,所以$\root{3}{-a}•\root{6}{a}=-{a^{\frac{1}{3}}}•{a^{\frac{1}{6}}}=-{a^{\frac{1}{2}}}$=$-\sqrt{a}$.
故选:A
点评 本题考查了根式和分数指数幂的互化,属于基础题.
练习册系列答案
相关题目
17.设A={x|$\frac{1}{2}$<x<5,x∈Z},B={x|x≥a}.若A⊆B,则实数a的取值范围是( )
| A. | a<$\frac{1}{2}$ | B. | a≤$\frac{1}{2}$ | C. | a≤1 | D. | a<1 |
11.函数sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}\right.$叫做符号函数,则不等式x+(x+2)sgn(x+1)≤4的解集为( )
| A. | (-∞,1] | B. | (-1,1) | C. | (-1,1] | D. | [-1,1] |
18.2016年11月21日是附中建校76周年校庆日,为了了解在校同学们对附中的看法,学校进行了调查,从全校所有班级中任选三个班,统计同学们对附中的看法,情况如下表:
(1)从这三个班中各选一位同学,求恰好有2人认为附中“非常好”的概率(用比例作为相应概率);
(2)若在B班按所持态度分层抽样,抽取9人,再从这9人中任意选取3人,记认为附中“非常好”的人数为ξ,求ξ的分布列和数学期望.
| 对附中的看法 | 非常好,附中推行素质教育,身心得以全面发展 | 很好,我的高中生活很快乐很充实 |
| A班人数比例 | $\frac{3}{4}$ | $\frac{1}{4}$ |
| B班人数比例 | $\frac{2}{3}$ | $\frac{1}{3}$ |
| C班人数比例 | $\frac{1}{2}$ | $\frac{1}{2}$ |
(2)若在B班按所持态度分层抽样,抽取9人,再从这9人中任意选取3人,记认为附中“非常好”的人数为ξ,求ξ的分布列和数学期望.