题目内容

16.已知函数f(x)=a(x-1)lnx+1(a∈R).
(1)讨论函数f(x)的单调性;
(2)若x∈(1,+∞),f(x)>x-alnx恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;
(2)问题转化为axlnx+1-x>0在(1,+∞)恒成立,令g(x)=axlnx+1-x,(x>1),求出函数的导数,通过讨论a的范围判断函数的单调性,从而求出a的范围即可.

解答 解:(1)f′(x)=alnx+a-$\frac{a}{x}$,f″(x)=$\frac{a(x+1)}{{x}^{2}}$,
a>0时,f″(x)>0,f′(x)在(0,+∞)递增,
又f′(1)=0,∴x∈(0,1)时,f′(x)<0,f(x)递减,
x∈(1,+∞)时,f′(x)>0,f(x)递增;
a<0时,x∈(0,1)时,f′(x)>0,f(x)递增,
x∈(1,+∞)时,f′(x)<0,f(x)递减;
a=0时,f(x)=1,是常函数;
(2)若x∈(1,+∞),f(x)>x-alnx恒成立,
即axlnx+1-x>0在(1,+∞)恒成立,
令g(x)=axlnx+1-x,(x>1),
g′(x)=alnx+a-1,
a>0时,g′(x)递增,g′(1)=a-1,又g′(1)=0,
∴g′(a)≥0,即a-1≥0,解得:a≥1,
a≤0时,x→+∞时,g(x)→-∞不成立,
∴a≥1.

点评 本题考查了函数的单调性问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网