题目内容

1.六名同学A、B、C、D、E、F举行象棋比赛,采取单循环赛制,即参加比赛的每两个人之间仅赛一局.第一天,A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过.那么F在第一天参加的比赛局数为(  )
A.1B.2C.3D.4

分析 从A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过这个已知条件入手,进而可一步一步推得每个人分别与那几个人下了几局,最后即可得出F最终下了几局.

解答 解:由于A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过,
所以与D赛过的是A、C、E、F四人;
与C赛过的是B、D、E、F四人;
又因为E只赛了两局,A与B各赛了3局,
所以与A赛过的是D、B、F;
而与B赛过的是A、C、F;
所以F共赛了4局.
故选D.

点评 本题主要考查了推理与论证的问题,能够通过已知条件找出突破口,从而通过推理得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网