题目内容
2.设x,y满足约束条件$\left\{{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}}\right.$若0≤ax+by≤2恒成立,则a2+b2的最大值是( )| A. | 1 | B. | $\frac{8}{9}$ | C. | $\frac{20}{9}$ | D. | 4 |
分析 由约束条件作出可行域,利用线性规划知识,通过0≤ax+by≤2,得到a,b的不等式组,然后求解a2+b2的最大值.
解答
解:由约束条件$\left\{{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{y=1}\\{x+y=3}\end{array}\right.$,解得A(2,1),$\left\{\begin{array}{l}{y=1}\\{x-y=-1}\end{array}\right.$
可得C(0,1),
$\left\{\begin{array}{l}{x+y=3}\\{x-y=-1}\end{array}\right.$可得B(1,2).
0≤ax+by≤2恒成立,可得:$\left\{\begin{array}{l}{0≤2a+b≤2}\\{0≤b≤2}\\{0≤a+2b≤2}\end{array}\right.$,
画出关于a,b的可行域,如图:![]()
a2+b2的几何意义是可行域内的点到原点的距离的平方,显然D到原点的距离最大,
由$\left\{\begin{array}{l}{2a+b=0}\\{2+2b=2}\end{array}\right.$,解得D(-$\frac{2}{3}$,$\frac{4}{3}$)
∴a2+b2的最大值$(-\frac{2}{3})^{2}+(\frac{4}{3})^{2}$=$\frac{20}{9}$.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
13.已知tanα>0,则点P(sinα,cosα)位于( )
| A. | 第一、二象限 | B. | 第一、三象限 | C. | 第二、三象限 | D. | 第二、四象限 |
14.设$a={(\frac{1}{2})^{0.7}}$,$b={(\frac{1}{2})^{0.8}}$,c=log30.7,则( )
| A. | c<b<a | B. | c<a<b | C. | a<b<c | D. | b<a<c |